Pilot call 2013 WatEUr

Funded projects Final Presentations

FRAME

FRAME

A novel framework to assess and manage contaminants of emerging concern in indirect potable reuse

Kevin S. Jewell, Jörg E. Drewes, Christian Dietrich, Uwe Hübner, Stefano Polesello, Giuseppe Mascolo, Mario Carere, Kevin V. Thomas, Daniel Pierre, Wolfram Kloppmann, Marie Pettenati, Géraldine Pico-Colbeaux, Nina Hermes, Johann Müller, Sapia Murgolo, Sara Valsecchi, Axel Aurouet, Loïc Thomas, Aurore Hertout, Karina Petersen, Soňa Fajnorova, Meriam Muntau, Saer Samanipour, Ailbhe L. Macken, Thomas A. Ternes

Rationale

- Overexploitation of water resources calls for increased application of indirect potable reuse (IPR)
- Management strategies for IPR in the European context are currently lacking

<u>Aims</u>

- Develop new strategies to manage CECs and pathogens in IPR for drinking water augmentation
- Overall evaluation procedure for IPR

FRAME Handbook

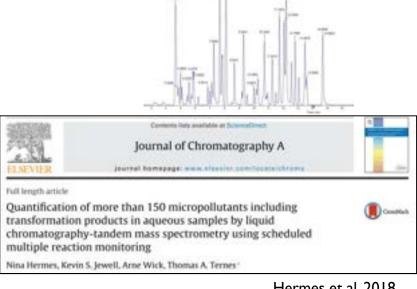
Chapters:

- Regulation, guidelines EU, USA, WHO, ...
- Evaluation scheme Indicator parameters
- Monitoring Methods, examples
- Treatment barriers Innovative solutions
- Decision support Software

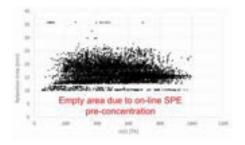
Analysis methods

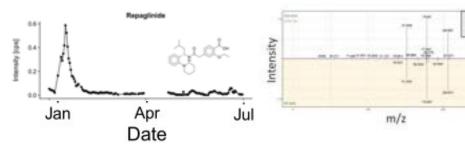
- Biological contaminants
 - FIBs

- Escherichia coli and total coliform bacteria ISO 9308-2:2012
- Pseudomonas aeruginosa EN ISO 16266:2008
- Enterococci DIN EN ISO 7899-2
- Antibiotic resistant bacteria, resistance genes
 - Ampicillin
 - Imipenem
 - Vancomycin
 - Erythromycin
 - Sulfamethoxazole



Hampton T. (2013)



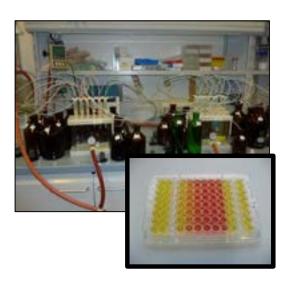

Analysis methods

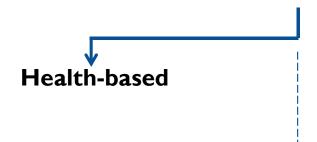
- Chemical contaminants
 - Target analysis methods
 - 166 CECs incl. 12 PFAS, 70 transformation products (biological, ozone)
 - **Three** multi-residue methods
 - Non-target analysis

Hermes et al. 2018

Analysis methods

- Chemical contaminants (cont.)
 - Effect-based monitoring in vitro
 - Ames test mutagenic/carcinogenic activity
 - GeneBLAzer® endocrine activity





Evaluation scheme

Point of compliance:

WWTP Advanced Environ. Water treatment buffer works

P.O.C.

Performance-based

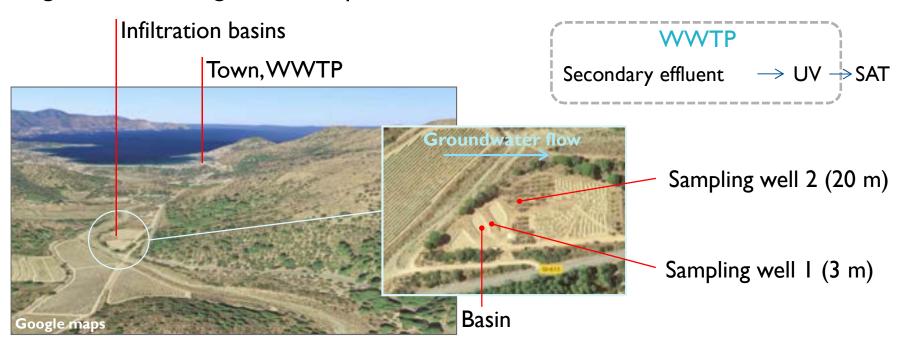
- Threshold limits
 - CECs
 - Pathogens
- Effect-based
 - Zebrafish embryo test (lethal)

- CEC removal: Comparative treatment process evaluation incl. TPs
- Treatment targets for pathogens
- Effect-based
 - Zebrafish embryo test (sub-lethal)
 - Receptor assays (in vitro effects)

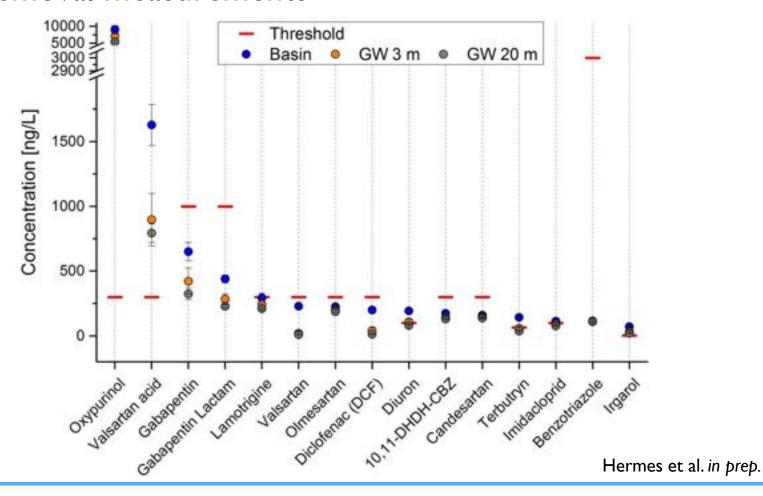
Below

Evaluation scheme

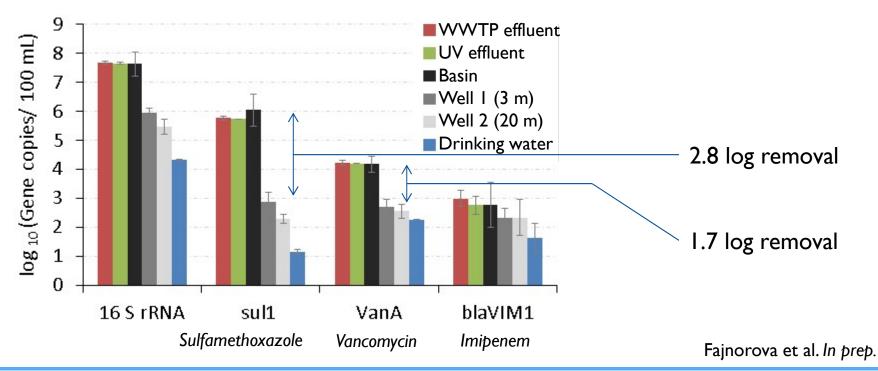
- Selection of CECs for health-based targets
 - Cat. A: Health-related compounds (e.g. GOW of UBA)
 - Cat. B: Health-related compounds WFD
 - Cat. C: Ozonation by-products


Example of Cat. B:

Name	Type or use	Regulatory values	IPR				
Terbutryn	Biocide	0.065 μg/L (WFD)	< 65 ng/L				
Isoproturon &	Herbicide	0.1 μg/L (DWD 98/83/EC)	< 100 ng/L				
PFOS	Industrial	0.65 ng/L (WFD)	< 0.65 ng/L				
PFOA	Industrial	0.1 μg/L (proposal DWD revision)	< 100 ng/L				
PFASs – Total	Industrial	0.5 μg/L (proposal DWD revision)	< 500 ng/L				

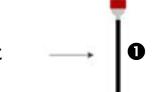

Monitoring studies

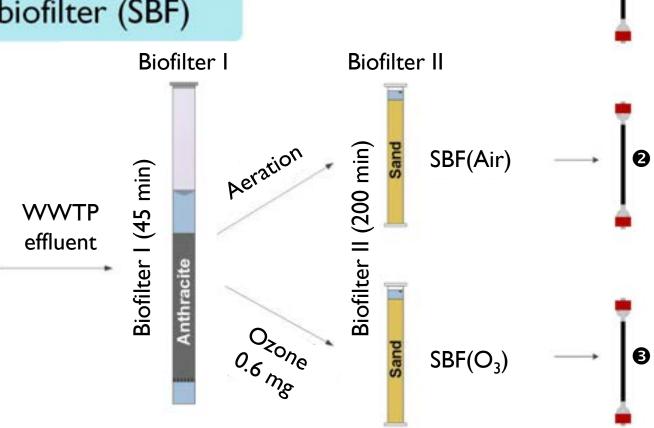
• El Port de la Selva, Spain – Indirect Potable Reuse groundwater augmentation, prevent sea-water intrusion


Monitoring studies CEC removal measurements

Monitoring studies

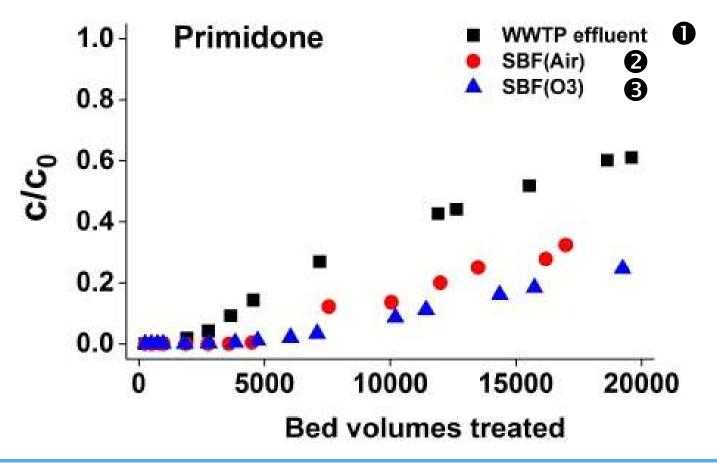
Antibiotic resistance: removal of A.R. genes



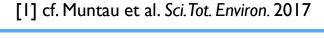

Advanced solutions

Fast test GACs

WWTP effluent



- Hybrid sequential biofilter (SBF)
 - Biofilter I (short)
 - Biofilter II (long)
- Interstitial aeration or ozonation
- Post-columnGAC


Advanced solutions

Conclusion, outlook

- Take home messages:
 - **Mitigation:** Multi-barrier systems (Ozone, Activated Carbon, Soil passage) are the most effective options^[1]
 - Evaluation/control: A small range of indicator substances and pathogens, supplemented with effect-based measures
 - Modelling/decision support: Useful tool to assist process understanding and decision making
 - Link: [http://www.geo-hyd.net/install/Frame_DSS]

Stakeholder engagement

- Input/consultation in the development of the evaluation strategy
 - Point of compliance & regulatory values
- Final workshop included presentations and discussion sessions with stakeholders from Europe and overseas
 - Panel discussions
 - Outputs fed into FRAME Handbook

Impact and knowledge output

- Handbook tailored to decision-makers
- Sensitive multi-residue analytical methods
- Impact on monitoring and evaluation strategies, EU policy implementation and future research
- CEC mitigation strategies, e.g. SMART concept

Collaboration, coordination, mobility, synergies

- Six exchange visits within the consortium
- Nine consortium or bilateral meetings at different institutes
- Links gained between all groups of the FRAME consortium,
 e.g. treatment design and CEC analysis
- Most institutes are continuing to work together

Future work

- Linking effect-based results with responsible contaminants
- Development of non-target strategies for contaminant prioritization
- Up-scaling of pilot-scale technical solutions, e.g. SMART system
- Further development of decision support tools and online resources

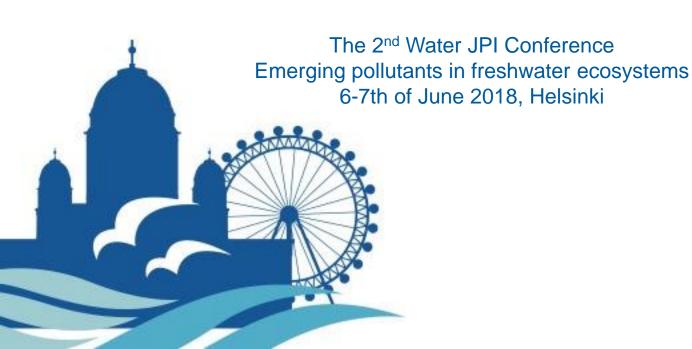
Acknowledgement

Water

- Representatives at the field sites
- Partners, institutions
- www.frame-project.eu

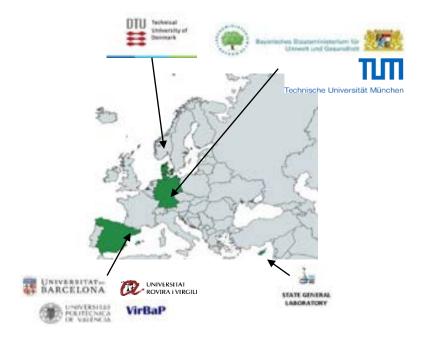
Last slide

METAWATER



Emerging viruses in irrigation waters

Rusiñol M., Hundesa A., Fernández-Cassi X., Martínez-Puchol S., Timoneda N., Abril J.F., Bofill-Mas S., <u>Girones R</u>



Metawater

New Metagenomics and molecular based tools for European scale identification and control of emergent microbial contaminants in irrigation water

Do we have methods for quantification of viruses?

Journal of Microbiological Methods 134 (2017) 46-53

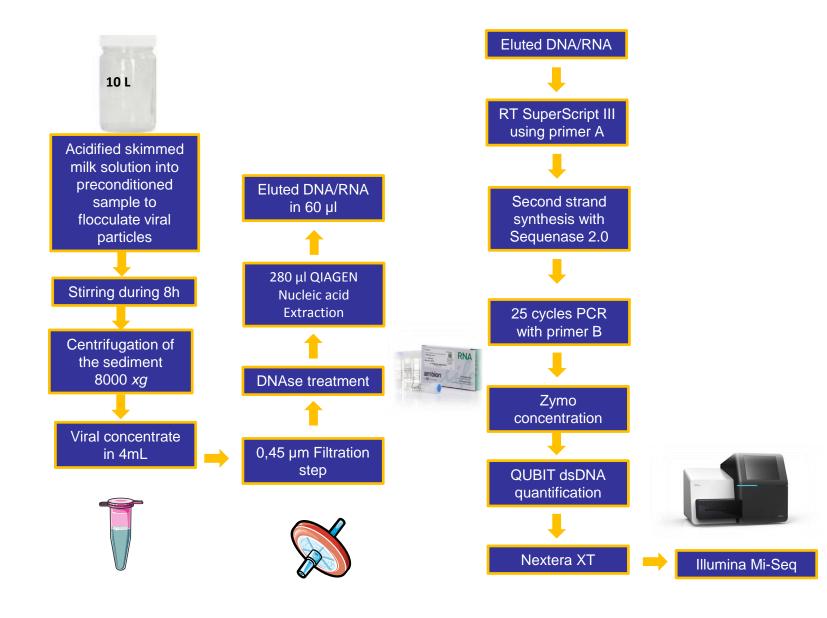
Contents lists available at ScienceDirect

Journal of Microbiological Methods

Characterization of the efficiency and uncertainty of skimmed milk flocculation for the simultaneous concentration and quantification of water-borne viruses, bacteria and protozoa

Eloy Gonzales-Gustavson ^a, Yexenia Cárdenas-Youngs ^a, Miquel Calvo ^a, Marcelle Figueira Marques da Silva ^a, Ayalkibet Hundesa ^a, Inmaculada Amorós ^b, Yolanda Moreno ^b, Laura Moreno-Mesonero ^b, Rosa Rosell ^c, Llilianne Ganges ^c, Rosa Araujo ^a, Rosina Girones ^{a,*}

- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Av. Diagonal 643, 08028 Barcelona, Catalonia, Spain
- Evaluate the aplicability of SMF for the simultaneous concentration of viruses, bacteria and protozoa in water.
- Determine the efficacy of the SMF recovery
- Compare q(RT)PCR and infectivity assays for viruses
- Define variability and uncertainty values of the method to use them in QMRA studies.


Virus recovery by qPCR and Infectivity quantification

Virus		% Recovery										
	Method	Mean %	CI 95% of mean	min	max							
HAdV	qPCR	66	53.5 - 78.5	32.2	86.7							
паи	IFA	58.7	4.5 - 100	8.1	49.8							
MS2	q(RT)PCR	23.9	19.6 - 28.1	13.8	36.8							
	PFU	11.9	9 - 14.7	9.5	13.9							
RoV	q(RT)PCR	28.2	25.6 - 30.7	16	37.1							
	TCID50	26.1	17.1 - 35.1	43.5	83.7							
BVDV	q(RT)PCR	14.7	10.8 - 18.7	12.9	15.8							
	TCID50	0.7	0.4 -1.1	0.67	0.89							

Bacteria and protozoa recovery with qPCR and IFA quantification

		% Recovery									
	Method	Mean %	CI 95% of mean	min	max						
E. coli	qPCR	59.6	40.3 - 79	15.6	98.7						
H. pylori	qPCR	30.2	24.4 - 36.1	20.8	41.5						
A. castellanii	qPCR	20.5	14.9 - 26.1	13	32.1						
G. lamblia	IFA	17.8	15 - 20.7	12.8	21.5						
C. parvum	IFA	12.8	12.5 - 15.2	9.6	17.4						

Protocol for the treatment of water samples for metagenomics

NGS and molecular techniques for the analysis of emerging bacteria, protozoa and viruses in irrigation water

One year sampling, 72 irrigation water samples + 12 sewage +12 secondary treated effluents

Conventional irrigation water sources

Drinking water tank (DW) and Sediment of the DW tank

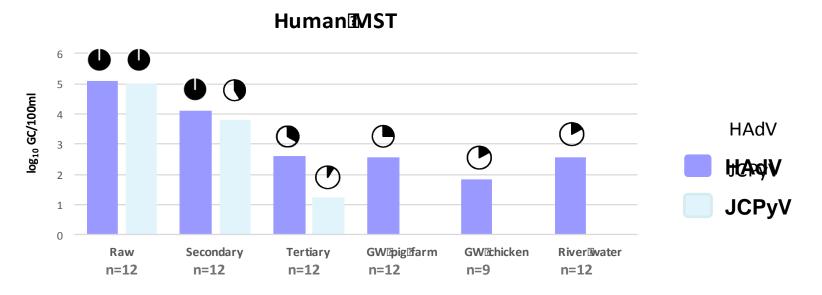
Reservoir water

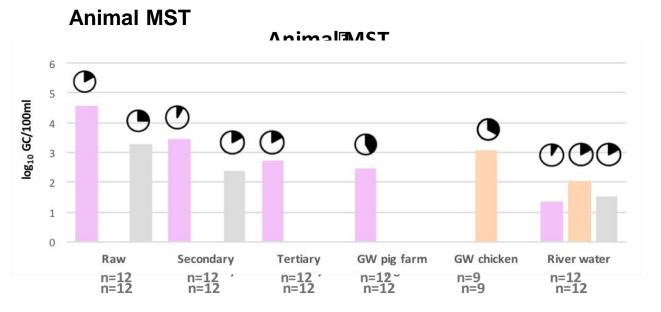
Reservoir water for orchard irrigation

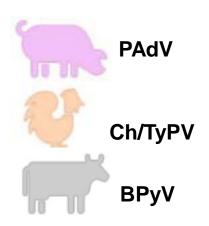
Growndwater

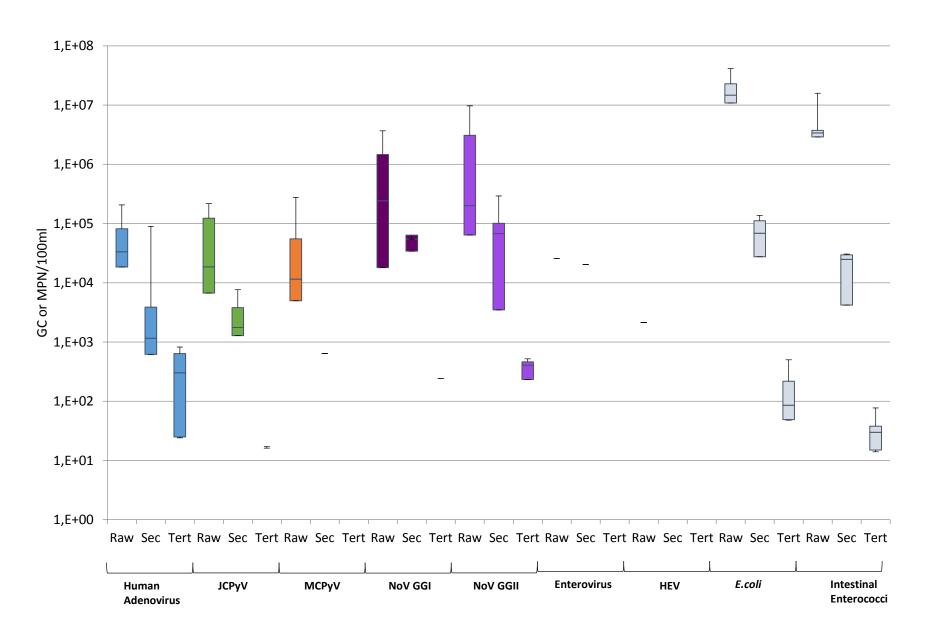
River water

Wastewater and recycled water


Raw sewage Secondary treated effluent (CAS) Wetland effluent (tertiary treatment) Wetland treated effluent (Filtration+Cl₂)






MST markers as irrigation water management tools

qPCR results in raw sewage, secondary and tertiary treated effluents (wetland)

Microbial removal efficiency in wastewater treatment plants and risk assessment studies

Quantitative Microbial Risk Assessment to estimate the health risk associated with the ingestion of lettuce irrigated with tertiary effluents from 2 WWTPs

WWTP	Virus	Observed	To reach 10 ⁻⁶ DALYs
l	HAdV	2.5	5.6
UV, chlorin.			
Actiflo ®	NoV GII	1.9	7
2	VbAH	2.8	5. I
Wetlands	NoV GII	3.9	6.7

Mean of the best fit distributions of reductions in tertiary effluent by each virus in actual scenario and required reductions to reach suggestions of WHO (10⁻⁶ DALYs).

METAWATER		Distribution	Reservoir	Groundwater River water					Wetland (Reclaimed)				Raw sewage						
		6M	6M	SP	SU	AU	WI	SP	SU	AU	WI	SP	SU	AU	WI	SP	SU	AU	WI
1	Anelloviridae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
	Adenoviridae	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1	3	1	0
	Caliciviridae	0	0	0	0	0	0	0	0	1	0	0	0	0	0	4	3	5	4
Vertebrate	Papillomaviridae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0
Vertebrate	Picornaviridae	0	1	0	0	1	1	0	0	3	1	0	2	1	1	17	11	11	11
	Circoviridae	0	3	1	6	0	0	4	0	5	3	3	7	2	3	9	12	14	5
	Astroviridae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	4	8	4
	Hepeviridae	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	1	0	0
1	Microviridae	2	6	5	7	2	1	12	7	8	8	7	9	9	9	41	25	36	46
	Podoviridae	6	12	12	15	2	0	25	6	7	6	13	11	4	3	14	86	33	53
	Myoviridae	10	25	19	33	11	8	31	17	16	21	23	25	7	4	49	103	51	144
Bacteria	Siphoviridae	15	38	15	40	11	12	38	16	44	34	50	33	16	16	39	167	85	172
	Inoviridae	4	1	3	4	1	0	2	3	2	2	2	2	2	0	4	4	1	3
2000	Leviviridae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	2
	Picobirnaviridae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4	6	5	8
8	Alphaflexiviridae	0	0	0	0	1	0	0	0	0	0	0	0	0	0	2	6	2	1
Fungi	Partitiviridae	0	0	0	1	0	0	4	0	1	0	0	0	0	0	2	0	1	5
	Betaflexiviridae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	2
Î	Secoviridae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	1	1	1
*	Potyviridae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	5	2	0
	Closteroviridae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	3	2	1
	Tymoviridae	0	0	0	0	0	0	.0	0	0	1	0	0	0	0	2	2	1	3
Plants	Virgaviridae	0	4	0	3	1	1	1	1	14	11	0	4	8	8	15	16	14	9
	Tombusviridae	0	2	0	9	0	0	3	5	20	17	0	0	1	1	8	9	9	2
	Bromoviridae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
	Geminiviridae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
1	Luteoviridae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
Alga	Phycodnaviridae	2	11	4	9	1	1	11	5	2	7	4	4	2	1	0	3	2	0
Amoeba I	Mimiviridae	0	9	1	3	0	0	4	2	1	1	1	0	1	0	0	1	0	0
Invertebrate I	Dicistroviridae	0	0	0	1	0	0	0	0	5	2	0	3	3	2	3	4	2	1:
1	Iridoviridae	0	8	1	1	0	0	2	0	4	4	8	4	0	3	0	0	1	1
Multiple host	Nodaviridae	0	0	0	0	0	0	0	0	2	1	0	0	0	0	1	1	1	4
Į.	Parvoviridae	0	9	2	2	0	0	4	0	4	3	2	2	1	7	11	20	20	17

Average of 1,2 million reads per sample

Main conclusions and recommendations

1. Concentration protocols for the efficient (low-cost) quantification of pathogens in water are useful for improving QMRA studies to facilitate evidence based decisions for water safety management.

Recommendation: There is a need of implementing highly advanced sewage treatments (such as MBR) or additional disinfection treatments to achieve acceptable microbial quality for water reuse in irrigation of fresh vegetables

2. Analysis of the virome using metagenomics in raw sewage has shown the presence important human pathogens including emerging strains of both RNA and DNA viruses

Recommendation: Implementation of metagenomic public health surveillance systems using NGS techniques in urban sewage as a valuable data base with information of the circulating viruses in the population.

Xavier Fernández Cassi
Ayalkibet Hundesa
Natàlia Timoneda
Aiora Areguita
Eloy Gonzales Gustavson
David Aguado
Sandra Martínez Puchol
Marta Rusiñol
Sílvia Bofill Mas
Rosina Girones

http://www.ub.edu/microbiologia_virology/en

Computational Genomics Laboratory, UB Josep Abril

Laboratory of **Viruses** Contaminants of **Water** and **Food**

MOTREM

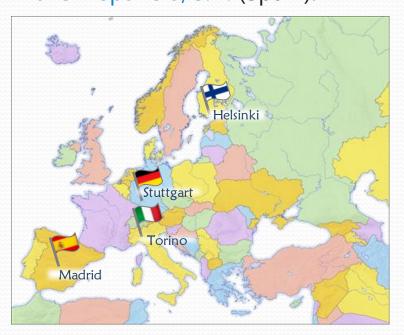
MOTREM

Javier Marugán (URJC, coord.),

Bertram Kuch (UST),

Jukka Pellinen (UH),

Paola Calza (UNITO),


Frank Rogalla (AQUALIA),

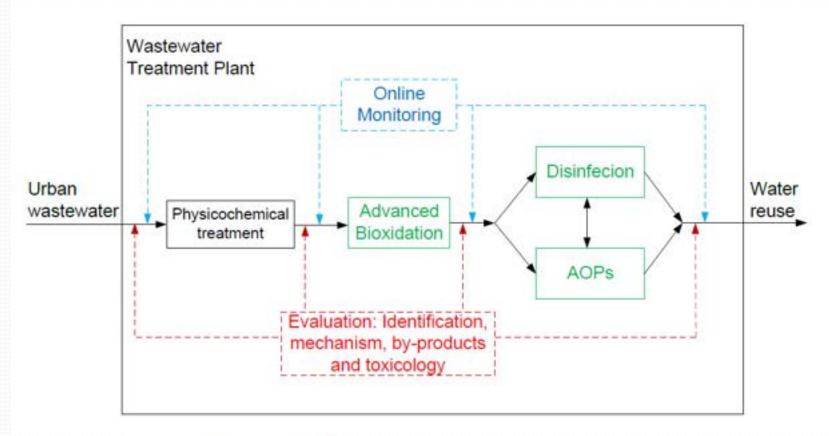
Pedro Cano (BRUKER)

Water JPI
Pilot Call Final Meeting
4th of June 2018, Helsinki

MOTREM

URJC – Universidad Rey Juan Carlos (Spain)
UST – Universität Stuttgart (Germany).
UH – University of Helsinki (Finland).
UNITO – Università di Torino (Italy).
FCC Aqualia S.A. (Spain).
Bruker Española, S.A. (Spain).

Integrated Processes for Monitoring and Treatment of Emerging Contaminants for Water Reuse



Integrated Processes for MOnitoring and TReatment of EMerging Contaminants for Water Reuse – Conceptual Diagram

MOTREM Work-Packages

WORK PACKAGES

Project execution is structured in 5 work packages:

WP1 Development of New Treatment Technologies (*URJC*)

WP2 Development of New Monitoring Technologies (*UST*)

WP3 Emerging Contaminants Evaluation (*UH*)

WP4 Dissemination and Exploitation of Project Outcome

(AQUALIA)

WP5 Project Coordination and Management (*URJC*)

Scientific and technological results

Main topics:

- a) Optimised biotreatment processes with enhanced efficiency in the removal of CECs based on the incorporation of specific microorganisms.
- b) Optimised disinfection technologies and AOPs able to deal simultaneously with the inactivation of pathogenic microorganisms and CECs before water reuse or discharge to the environment.
- c) Optimised technologies for the monitoring of the WWTP operation regarding the removal of CECs, including analytical procedures and measurements of integrative parameters.
- d) Identification of the most representative CECs for the evaluation and monitoring of the efficiency of the water treatment processes, including its degradation mechanism and toxicology.

Scientific and technological progress

WP3 – Emerging Contaminants Evaluation

Selection of representative ECs

Representative micropollutants for monitoring in a municipal WWTP were selected. The final list included 10 target compounds (20 as an extended list) that were chosen based on:

- Current and forthcoming legislation,
- Frequency of occurrence in municipal WWTP,
- Expected concentration levels,
- Elimination potential in conventional and advanced treatment.
- Analytical feasibility

The short list comprises:

Chemical	CAS	Acronym	Reason		
Atrazine	1912-24-9	ATZ	Target		
Caffeine	58-08-2	CFN	Indicator		
Carbamazepine	298-46-4	CBZ	Indicator/Target		
Diclofenac	15307-79-6	DCF	Target		
Estron	53-16-7	EST	Target		
Ibuprofen	51146-56-6	IBP	Indicator		
Simazine	122-34-9	SMZ	Target		
Sucralose	56038-13-2	SCL	Indicator		
Sulfamethoxazole	723-46-6	SMX	Target		
Triclosan	3380-34-5	TCS	Indicator/Target		

The extended list additionally comprises:

Chemical	CAS	Acronym MTP	
Metoprolol	51384-51-1		
Iopamidol	60166-93-0	IPM	
HHCB (Galaxolide)	1222-05-5	ННСВ	
HHCB-Lactone (Galaxolidone)	N/A	HHCB-L	
DEET	134-62-3	DEET	
Terbutryn	886-50-0	TBT	
Bisphenol A	80-05-7	BPA	
Tris-chloroethyl-phosphate (TCEP)	115-96-8	TCEP	
Perfluorooctanic acid (PFOA)	335-67-1	PFOA	
Acesulfame K	55589-62-3	ACF	

LCT Standard Analytical Method

Complete analytical method for the rigorous determination of these substances based on:

- Standard extractions cartridges.
- Use of isotopically labelled internal standards.
- GC-MS/MS, LC-MS/MS, LC-TOF/MS analytical equipment.

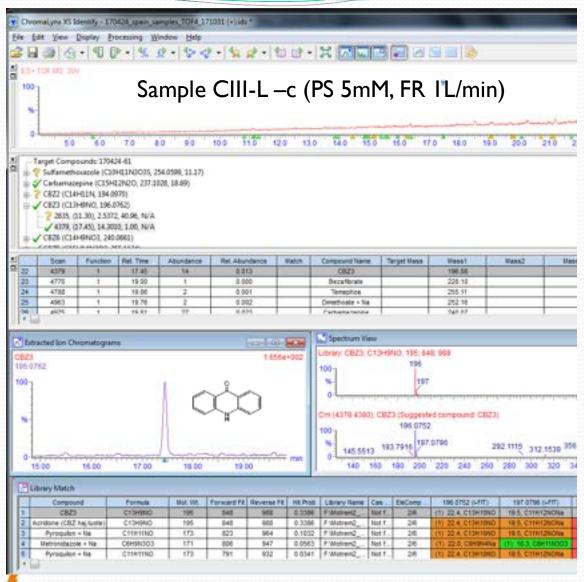
LC

- Column: Waters Acquity UPLC HSS T3 1,8µm, 2,1×100mm
- Eluent A: 5% MeOH / H2O + 0,1% Formic acid
- Eluent B: 100% MeOH + 0,1% Formic acid
- Flow: 0,2 ml/min
- Gradient, 22 min:
 - I min 100%A
 - 10 min 100%A -> 100% B
 - 8 min 100 % B
 - 3 min 100%A
- Injection volume: 20 μl

TOF

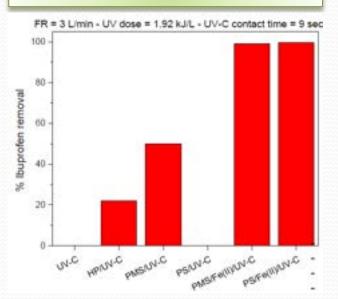
- Scan range: 60-1000 m/z
- 0,9 sec scan time, interscan delay 0,1 s
- Separate runs for ESI + and -
- ESI+: Caffeine, Simazine, Carbamazepine, Atrazine, Estrone
- ESI-: Sulfamethoxazole, Sucralose, Diclofenac, Triclosan, Ibuprofen

LCT Standard Analytical Method: Validation Data


	ESI(+)	ESI(-)		
	100 n=/	100 na/l	Linear range	
	LOQ, ng/l	LOQ, ng/l	up to, ng/l	
Caffeine	6.3		6000	
Sulfamethoxazole	1.7 14		8000	
Sucralose Na-adduct	17		4000	
Simazine	0.3		100	
Carbamazepine	1.3		4000	
Atrazine	0.4		800	
Estrone	4.4		800	
Diclofenac	3.0		8000	
Sucralose		48	8000	
Diclofenac		2.6	8000	
Ibuprofen		14	8000	
Triclosan		8.5	200	

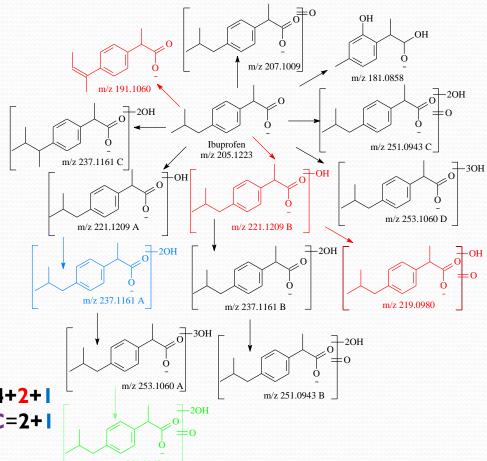
Post target LC-TOF

- A list of 30 possible transformation products of SMX,
 CBZ, and DCF was compiled using literature information
- These compounds were screened from the Spanish wastewater samples



Degradation intermediates

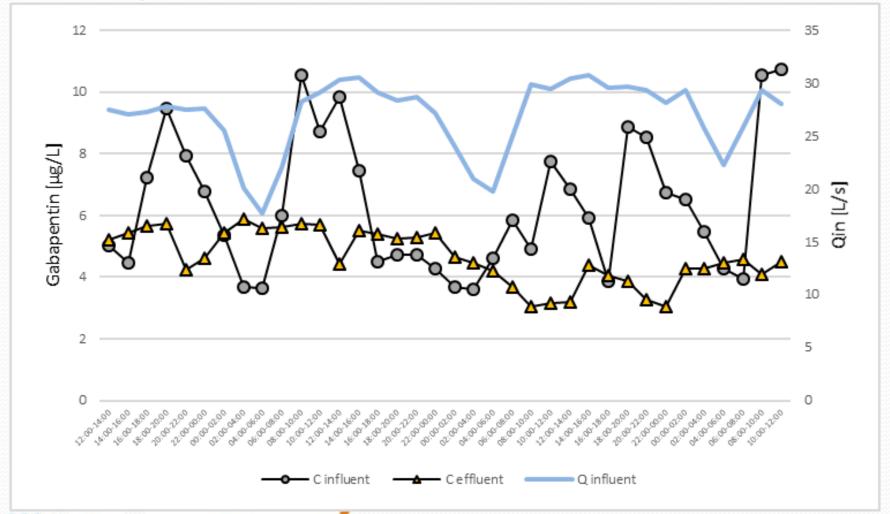
Example: the case of ibuprofen

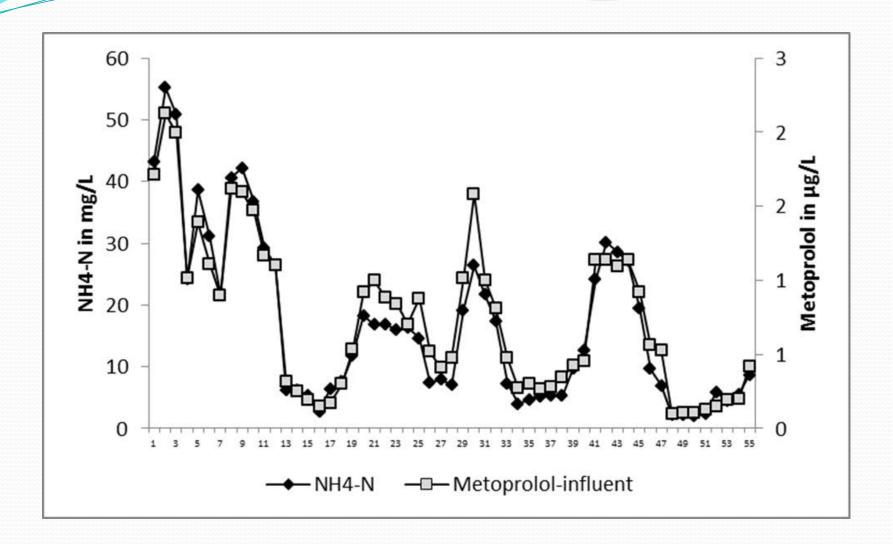


TPs number vs treatments

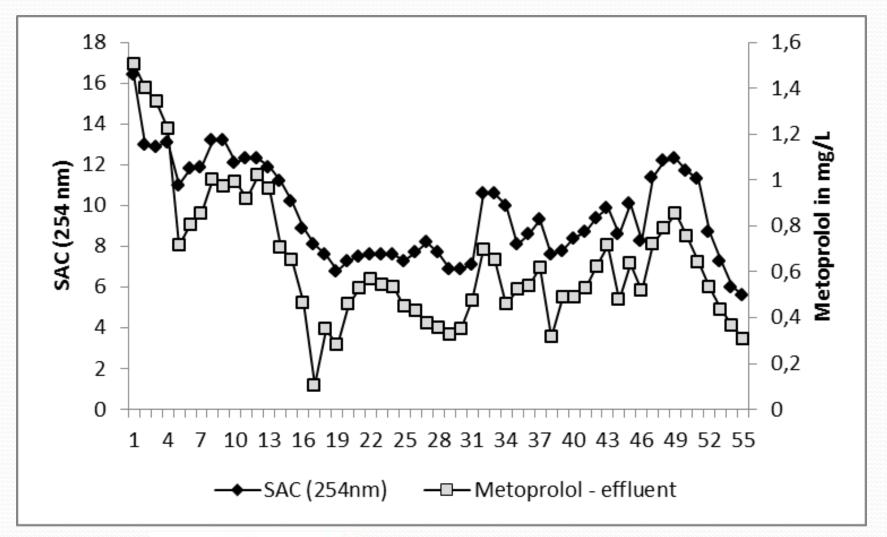
- √ 14 different TPs
- ✓ Some of them are common to several treatments.
- ✓ Other ones are specific to the treatment (green, blue)

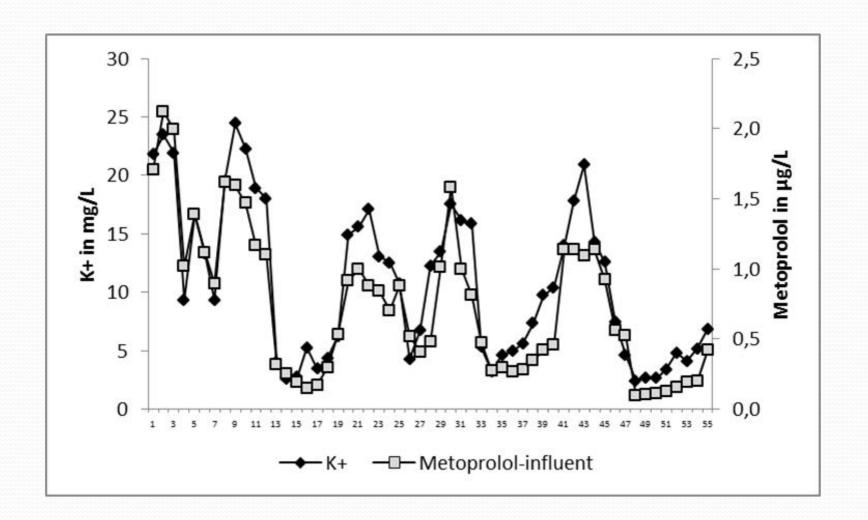
Scientific and technological progress

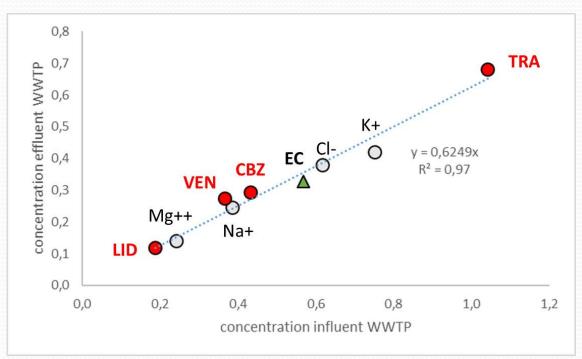

WP2 - Development of New Monitoring Technologies


Daily Fluctuations and HRT

Example: System WWTP – Q variable, 2h-mixed samples for 72 h

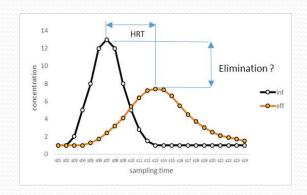






Verification of Sampling with conventional parameters

24h-mixed samples influent/effluent WWTP (E)

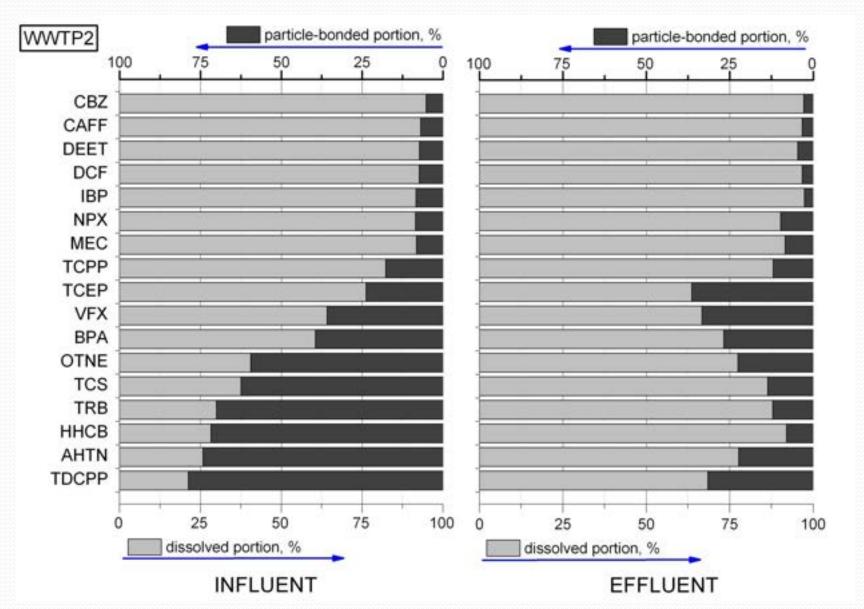


Removal of micropollutants appr. 37 %?

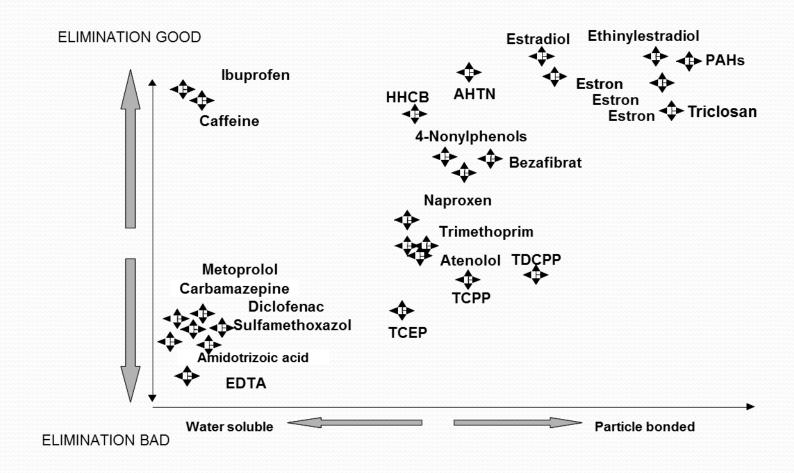
HRT not considered?

Dispersion?

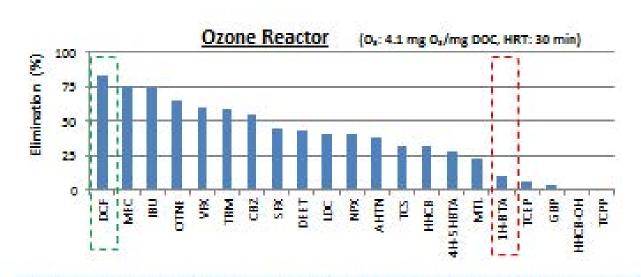
Foreign Water?

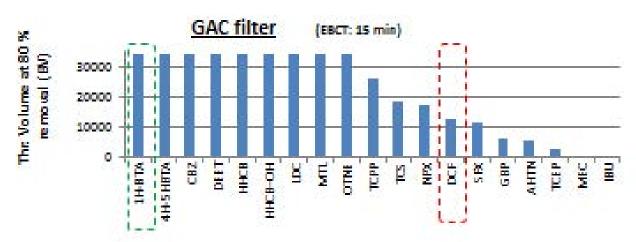


LID: Lidocaine; VEN: Venlafaxine, CBZ: Carbamazepine, TRA: Tramadol, EC: Electric Conductivity



Dissolved vs Particle bonded


MICROPOLLUTANTS - ELIMINATION IN MUNICIPAL WASTEWATER TREATMENT



Selection of representative substances

Micropollutants are removed at different extent by each process based on their properties
➤ Process-related micropollutants to be used for control

Selection of representative substances

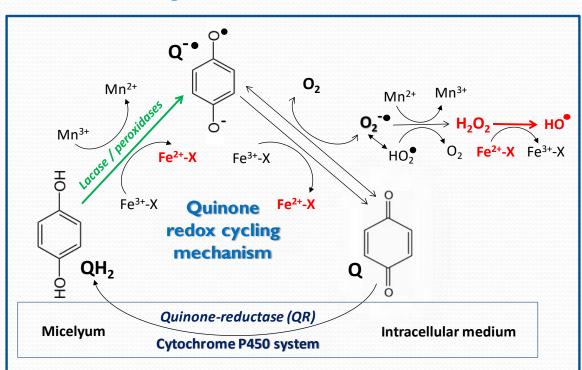
Selection should based on

- Process to be monitored
- Chemico-physical properties of the substance
- Occurrence and detection frequency (periodic/episodic)
- Source and entry path
- Substances should be representatives of a group with a similar behaviour

Scientific and technological progress

WP1 - Development of New Treatment Technologies

Trametes versicolor


Ganoderma lucidum

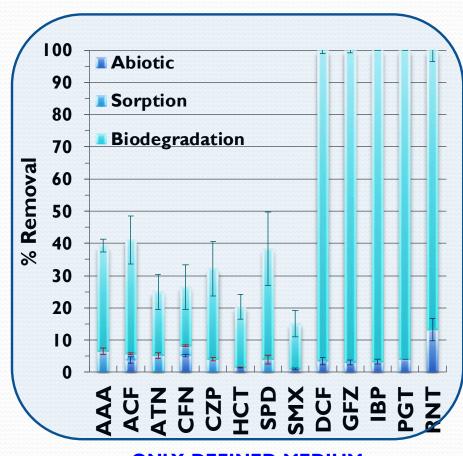
Advanced bio-oxidation process (ABOP) mediated by white-rot fungi

- Biological Fenton-like system
- Non-specific biodegradation system
- Preconditioning is not needed

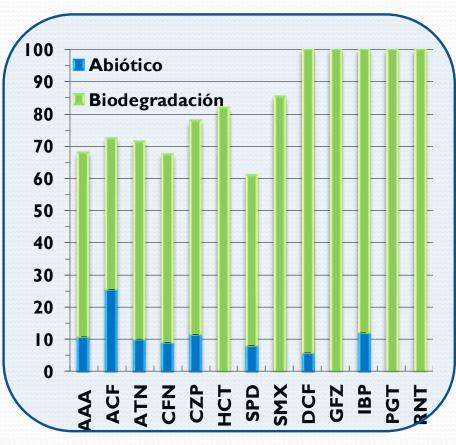
Generation of oxidizing radicals by extracellular enzymes

Process catalysed by intracellular quinone reductase (cytochrome P450 system) and any of the ligninolytic enzymes of white-rot fungi (peroxidases and laccases)

Key points

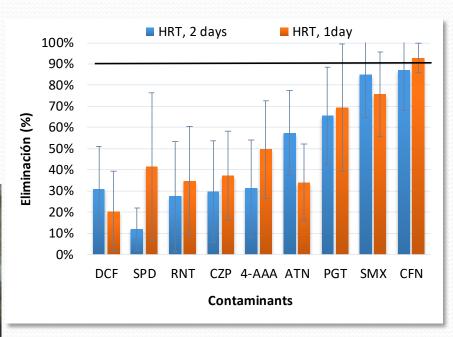

- Quinone mediator
- Fe (II) and Mn (II) species

Supplementary substrates for AOBP


Bioassays in batch reactors

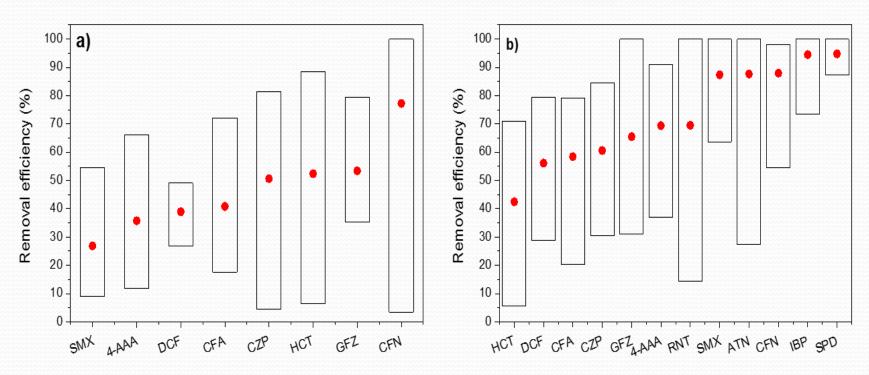
ONLY DEFINED MEDIUM

DEFINED MEDIUM +
SUPPLEMENTARY SUBSTRATES
FOR AOBP


Addition of Fe(III), Mn(II) and DMBQ activator

Fungal biodegradation in continuous Rotating Biological Contactors (RBCs)

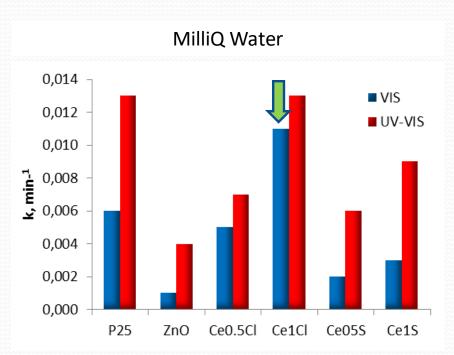
Units	1 (5 discs each)		
Total volume	24.5 L		
Disc diameter	30 cm		
Disc area	1.42 m ²		
Disc submerged	40% (10 L)		
Rotation speed	20 rpm		
HRT	1-2 days		
Temperature	26±2°C		

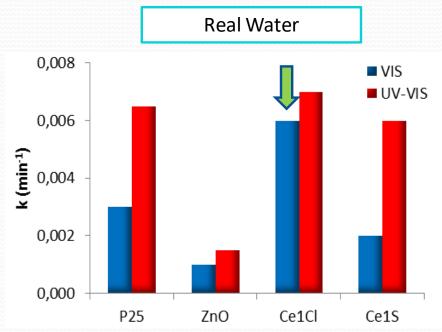

C-TOC Reduction ≈ 80% N-NH₄⁺ Reduction ≈ 90-95%

CONTINUOUS TREATMENT USING ROTATING BIOLOGICAL CONTACTORS

- A. Synthetic Urban WasteWater (SUWW), spiked 50 μg/L, Id HRT
- B. Real Urban WasteWater (RUWW) from DAF (URJC), spiked 50 μg/L, I d HRT

Intervals of removal of pharmaceutical compounds for the treatment of a) SUWW and b) RUWW (red dot: average value)

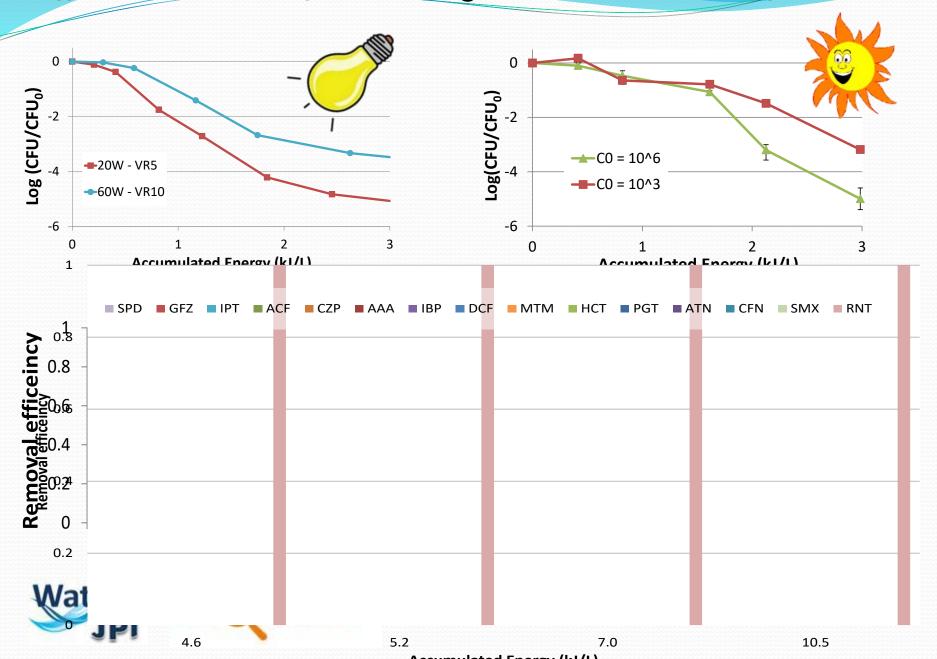


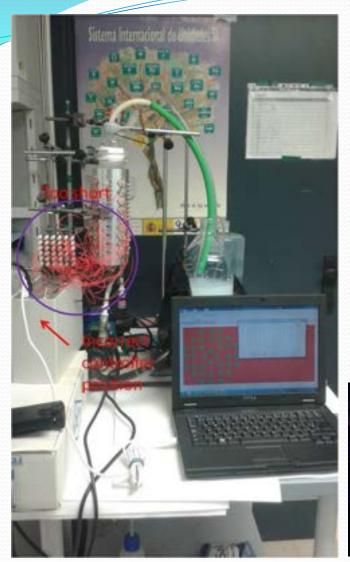

ZnO and Ce-ZnO photocatalytic materials

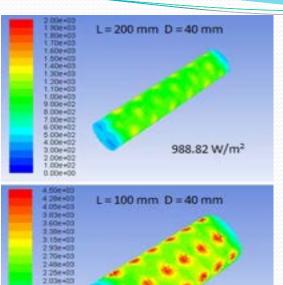
Synthesis

ZnO and Ce-ZnO synthesised via hydrothermal route from Zn acetate and $Ce(SO_4)_2$ or $CeCl_3$ at 0.5 % level (Ce05S) (Ce05Cl) and 1 % level (Ce1S) (Ce1Cl).

Removal of Acesulfame K removal







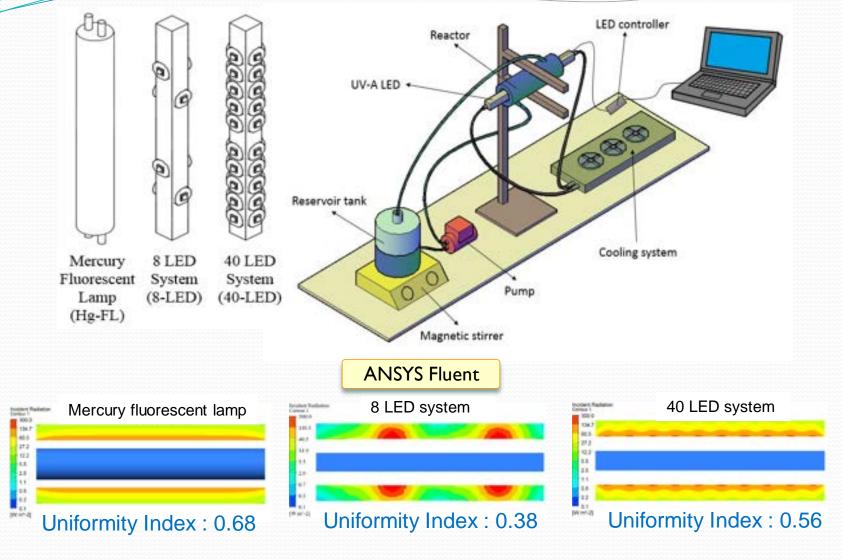
Efficient Removal of ECs during Photochemical Disinfection

Advance Photoreactors for Disinfection & CEC Removal

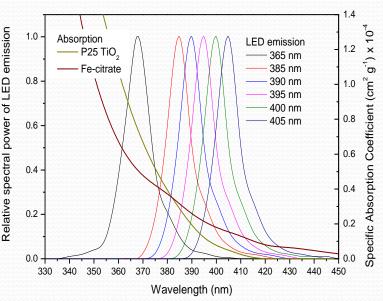
2652.9 W/m²

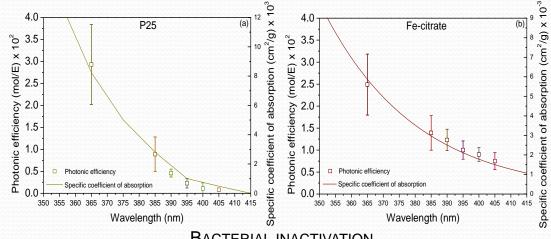
1.354+03 9.00e+02 6.75e+02

4.50e+02 2.25e+00



Advance Photoreactors for Disinfection & CEC Removal



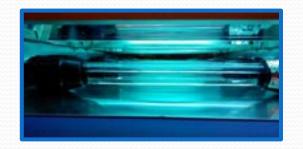


LED optimization


Advance Photoreactors for Disinfection & CEC Removal

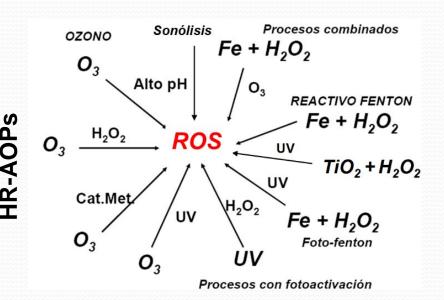
CHEMICAL OXIDATION

BACTERIAL INACTIVATION

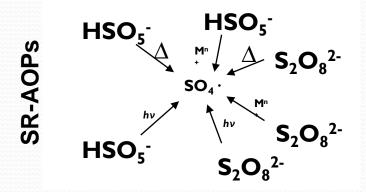

WPI:Task I.3. Disinfection & Removal of emerging contaminants

Fixed-Bed Reactor: Catalytic Foams

Disinfection & CEC Removal: UV-C Pilot Plant

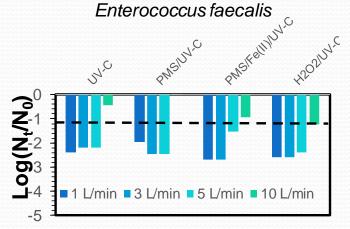

Maximum operational conditions

- 4 UV-C lamps (380 W; $\lambda = 254$ nm)
- 4 serial quartz pipes
- Illuminated volumen = 2.84 L
- Flowrate = 1 54 L/min
- Maximum contact time = 2.84 minutes

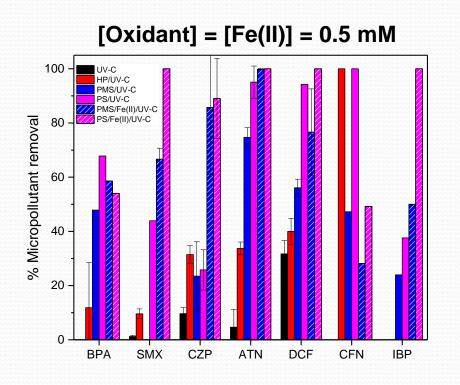

Treatments:

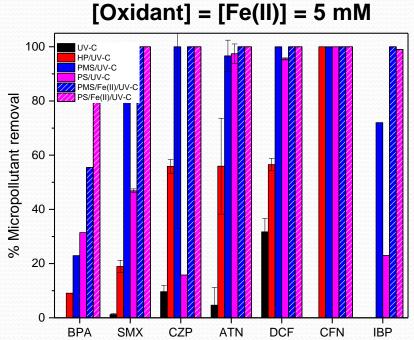
- UV-C
- PMS/UV-C
- PS/UV-C
- PMS/Fe(II)/UV-C
- PS/Fe(II)/UV-C
- H₂O₂/UV-C

Advanced Oxidation Processes


Oxidation Potential (V)								
F ₂	ЮH	SO ₄ ·	O at.	O ₃	H ₂ O ₂	MnO ₄	Cl ₂	CIO ₂
3.03	2.80	2.60	2.42	2.07	1.76	1.67	1.36	1.15

Disinfection & CEC Removal: UV-C Pilot Plant + Real WW





Disinfection

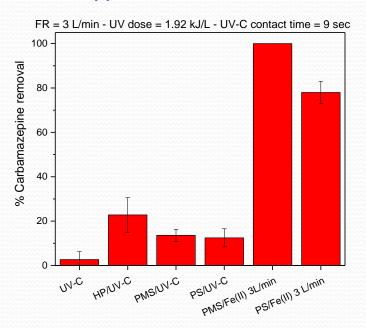
Disinfection & CEC Removal: UV-C Pilot Plant + Real WW

CEC Removal

Intermediates

Carbamazepine (t_R =21.82 min; 42.8 ± 36.9 μ g/L)

Number of TPs vs treatments:


HP/UV-C=5

PMS/UV-C=2

PS/UV-C=5+2

PMS/Fe(II)/UV-C=3

PS/Fe(II)/UV-C=2+1+2

Disinfection & CEC Removal: UV-C Full Scale Plant WWTP

36,000 m³/day

- 270,000 PE

Biotreatment: Activated sludge

 UV tertiary treatment

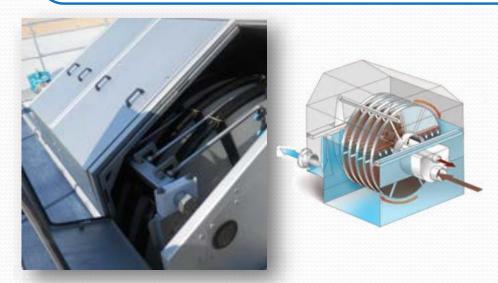
Disinfection & CEC Removal: UV-C Full Scale Plant WWTP

Estiviel WWTP

Location: Toledo **Population equivalent:** 270,000 PE

Design flow: 36,000 m³/day **Influent:** Urban WW

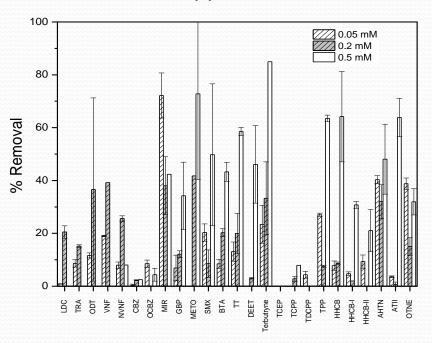
Biological process: Activated sludge Effluent discharge: Tajo River

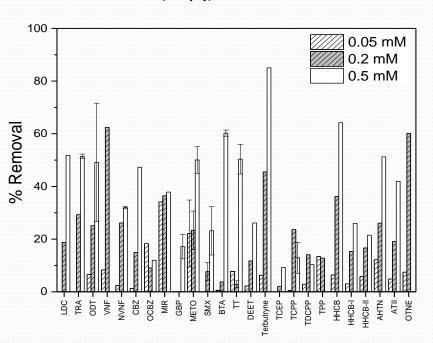

Tertiary treatment: 270 m³/day (irrigation and internal industrial use)

Coagulation/Flocculation - Sedimentation - Microfiltration (discs) - UV

Influent:

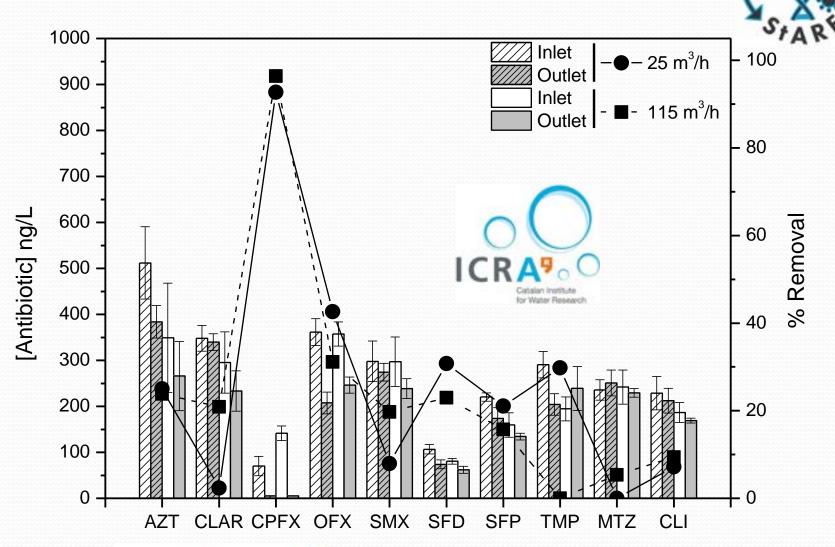
COD = 820 mg/l **BOD**₅ = 450 mg/l**SS** = 490 mg/l



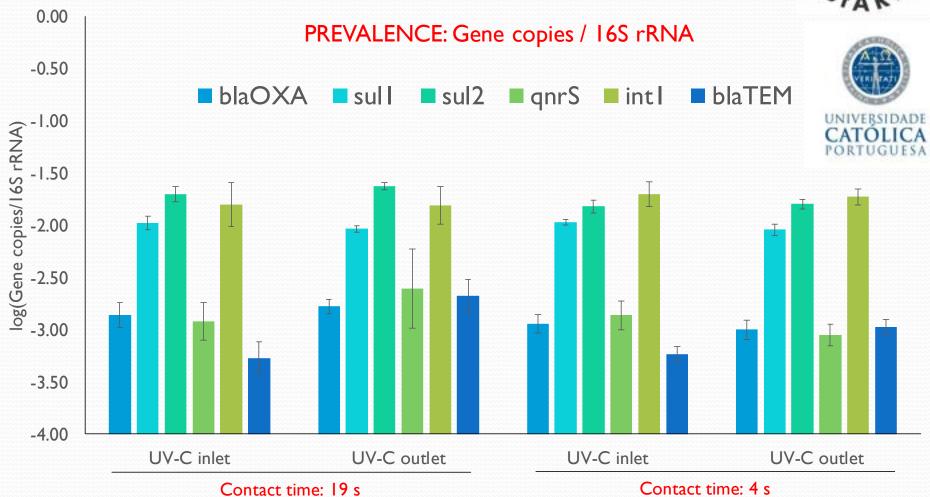

UV reactor (16 lamps)

Disinfection & CEC Removal: UV-C Full Scale Plant WWTP

PMS/Fe(II)/UV-C treatment


PS/Fe(II)/UV-C treatment

Removal of antibiotics



Removal of antibiotic resistance genes

Preliminary Economic Evaluation

Table 2

Economical estimation of operating cost of proposed oxidation treatments in the tertiary step.

UV-C contact time (s)	[Reagents]	UV-C**			H ₂ O ₂ /UV-C			PMS/UV-C			PS/UV-C		
		€/m³	% Removal	€/m³-order	€/m³	% Removal	€/m³-order	€/m³	% Removal	€/m³-order	€/m³	% Removal	€/m³-order
18	0.05				0.017	18	0.189	0.072	20	0.727	0.022	4	1.24
18	0.2				0.023	26	0.179	0.243	29	1.65	0.045	11	0.919
18	0.5	0.012	13	0.200	0.035	55	0.102	0.585	48	2.03	0.090	10	2.00
7	0.5	0.004	8	0.120	0.026	31	0.164	0.576	25	4.71	0.081	5	3.32
4	0.5	0.003	4	0.153	0.025	14	0.365	0.574	12	10.6	0.079	3	6.05

^{*}H2O2, PMS and PS.

^{**}No reagents required.

Most demanding operating conditions: highest UV-C contact time and reagents dosages.

Collaboration, coordination and synergies

Collaboration, with complementary key roles in:

- Treatment technologies (URJC).
- Monitoring and control of WWTP (UST).
- Analytical methodologies (UH).
- Mechanistic and toxicological studies (UNITO).
- Full-scale applications (AQUALIA).
- Analytical equipment (BRUKER).

Synergistic collaborations among them, beyond their individual work in the project.

Coordination and organization of the project: all the milestone and deliverables have been successfully and effectively completed without unexpected issues. The number of project meetings was sufficient, as a fluid communication was always kept.

Vast amount of samples from URJC and AQUALIA to UST, UH and UNITO

Identified problems or specific risks

The multidisciplinary work is somewhat missing, and should be considerable strengthen. This will be especially important in the future success of this project as several deliveries in the last part of the project will depend on strong collaborations at a multidisciplinary approach. I did not identified specific risks.

RECOMMENDATIONS

How to improve project scientifically?

As mention above, collaboration through a multidisciplinary approach will be crucial to improve scientifically. This said, the quality of the published papers holds a very high quality and reports important findings. No specific recommendations, Indicate if there is more cooperation with other JPI projects. If not present perhaps it can be more intensified.

How to advance the impact of the project?

There already seems to be a good impact from this project as several high quality papers has been published. However, to advance further the impact even a broader and larger number of possible stakeholders should actively be involved in the project (e.g. through spin-off projects). More mobility. I see nothing on costs of new technologies.

Collaboration between projects

Collaboration between MOTREM and STARE to explote the synergistic expertise developed in both projects.

Estiviel WWTP (AQUALIA, Toledo, Spain) + URJC Antibiotics (ICRA) + Antibiotic Resistences (UCP)

Mobility

Consortium meetings, conferences, workshops, training courses and other events attended: 14 mobility actions + 80 conferences.

- Macarena San Martín (UST) and María José Martín de Vidales (URJC) at the facilities
 of AQUALIA in Estiviel WWTP (Toledo, Spain) for extensive on-week monitoring
 campaign of the plant in order to have a background of the plant behaviour before
 implementation of new technologies.
- Riikka-Juulia Lepistö (UH) did a short stay in URJC labs in order to implement the required sample treatment and analytical methodologies
- Irene Fiore (UNITO) did a 3-month research stay in URJC focused on the development and testing of new photocatalytic materials.
- 3 URJC researchers (Jorge Rodríguez, Carmen García, Victoria Romeral) and one researcher from ICRA (Saulo Varela) to AQUALIA Estiviel WWTP for 2 weeks.
- Jorge Rodríguez (URJC) did a short stay in ICRA to assist on the analysis of the huge amount of samples collected from the WWTP.

nfrastructures

URJC: Rotating **biological contactors**, Materials synthesis and characterization equipment (XRD, XRF, SEM, TEM, DR-UV-Vis, ICP-OES), **UV photochemical reactors**, **Pilot WWTP** Technological Support Centre at URJC, **Water analytical laboratory** (LAGUA) of URJC: Physicochemical & Microbiological analysis.

UST: WWTP for Education and Research (LFKW, ISWA), municipal WWTP of Herbolzheim (Germany). Analytical equipment DOC, TOC, metals, etc and GC-MS, LC-MS-MS and ICP-MS.

UH: Waters LCT Premier XE LC-TOF-MS, Waters GCT Premier GC-TOF-MS, Shimadzu QP2010 Ultra GC-MS.

UNITO: ICP-AES, GC-QTOF-MS, HPLC-MS (LTQ- Orbitrap, QqQ and QTrap analysers), TOC, HPLC UV-vis and fluorescence detectors, an ion chromatograph and a Microtox device.

AQUALIA: Real scale **WWTP** facilities were provided by AQUALIA (Mérida, Tortosa, Benquerencia and Estiviel WWTPs). The full-scale experiments on a UV-C reactor (16 UV-C lamps, WEDECO ELR-30-1;330 W) and flow rates of 114,75 and 28 m3/h, (4 – 18 s of UV contact time).

BRUKER: Applications Development Laboratory located in Madrid, **UHPLC-ESI-Q-TOF**, Bruker Maxis; **UHPLC-ESI-IT**, Bruker AmaZon Ion Trap; **UHPLC(OLE)-ESI-TQ**, Bruker EVOQ; and **GC-MS-MS** Triple Quad, Bruker SCION.

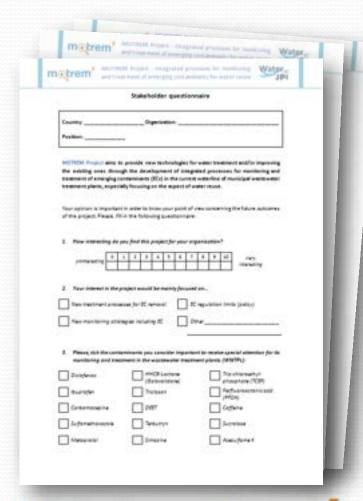
WP4 Dissemination and Exploitation of Project Outcome

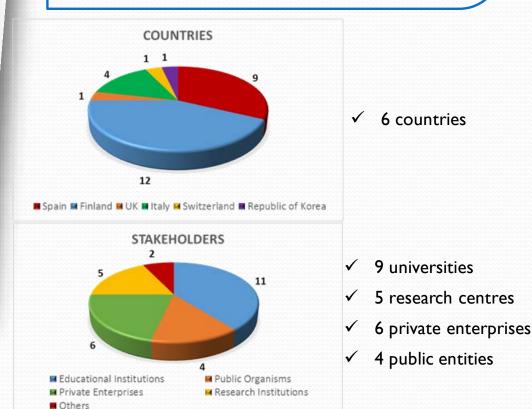
Task 4.1 Public and industrial engagement

<u>Objective</u>: To disseminate project results and techniques as widely as possible to scientists, general stakeholders, end-users and public.

- Stakeholders identification (target market, regulatory authorities, environmental agencies, etc.) to transfer the knowledge developed by MOTREM consortium. Questionnaires from stakeholders
- Spread and distribution of knowledge: Publications and Dissemination activities
- Social networks and Website.
- Open international workshop: 23-24 November 2017 (speakers from universities, companies, research centers). Invitation to funding agencies and regulatory agents.
- Training Workshop. On Friday 24th Nov at BRUKER

Task 4.3 Prospecting plan


Preliminary study of existing technologies in market



Questionnaire for stakeholders

- Interest in MOTREM project
 - Treatment, Monitoring, Regulation limits (policy)
- Most important ECs
- National/local legislation
 - Groundwater, Drinking water, Surface water
 Etc....

FCC Aqualia, S.A. is the water management parent company of FCC, one of the largest European services groups. Aqualia is the first water management company in Spain, third largest private water company in Europe and sixth in the world, according to the latest ranking by the specialist publication, Global Water Intelligence, and serves 22.5 million users.

4 municipal WWTPs operated by AQUALIA:

- Mérida

Tortosa

- Benquerencia

ESTIVIEL WWTP (TOLEDO)

Location: Toledo **Population equivalent:** 270,000 PE **Design flow:** 36,000 m³/day

Influent: Urban WW Biological process: Activated sludge Effluent discharge: Tajo River

Tertiary treatment: 270 m³/day (irrigation / internal industrial use) → Coagulation/Flocculation – Sedimentation – Microfiltration (discs) –

Applications Development
Laboratory
Chemical & Applied Markets

Provided with most of the last MS technologies from Bruker.

GC/MS/MS Scion[™] Triple Quad (2 units) LC/MS/MS Amazon[™] SL Ion Trap (1 unit) LC/MS/MS Q TOF Impact[™] II (1 unit) LC/MS/MS EVOQ[™] Triple Quad (2 units)

Other companies:

- DeNora Industries, a company with several research centres throughout the world and devoted to the development of adsorbent materials to be exploited in water treatment.
- IRIS, a micro-enterprise which has a patent application on an innovative AOP device. It develops plasma technology applications to liquid/solid waste treatment, aimed to improve technical and economic efficiency of small scale on site treatments enabling no waste / zero carbon footprint processes.
- SMAT, a large company dedicated to the management of the water cycle. SMAT manages the Integrated Water Service production and distribution of drinking water and waste water in the province of Turin.

Technical impacts:

- New analytical methods and protocols for MP.
- Reliable indicator and surrogate parameters for MP removal.
- Full scale WWTP tests of technologies for MP removal with cost analysis.

Societal impacts:

- Improvement in the wastewater treatment processes
- Assessment of the impact in recipient water bodies.
- Relevant information to set the basis of regulation of the discharges of CECs.
- Wastewater processes may also offer business opportunities to companies.

Local impacts:

- Estiviel WWTP in Toledo: influence the WWTP staff and the local authorities who were not aware of this environmental problem before the project.
- Public and private clients belonging to the third-party funding agencies of the ISWA, accept the necessity of adapted monitoring strategies and consider the requirements on appropriate sampling and monitoring strategies. Spillovers of the project tasks are passed on to stakeholders at the executive level of German Federal states, where UST is involved in WWTP monitoring programs.

Academic impacts:

- Lectures in master courses of the academic partners of MOTREM: UST German lectures for "Environmental protection technology", English lectures of the international programs "Air Quality Control, Solid Waste and Waste Water Process Engineering (WASTE, UST)" and "Water Resources Engineering and Management (WAREM, UST)".
- More than 40 graduate and post-graduate students have developed their bachelor, master and PhD thesis in the framework of MOTREM project activities. Here, the results of the project have already reached a large group of international and multidisciplinary working future engineers.

- Publications

- International
 - Peer-reviewed journals JCR: 41
 (25 published + 10 submitted + 6 in preparation)
 - Communications in conferences: 67
- National
 - Communications in conferences: 12 (Spain, Germany, Finland, Italy)
- Dissemination & Popularization: 10

(I Article + 5 conferences + 4 media appearances)

Events were administration representatives or general public were present

FuturEnviro, Nov 2015

Website: http://motrem.eu

Facebook: https://www.facebook.com/motremproject

Twitter: @MotremProject

Continuation of work in the future

The <u>complementary expertise</u> of the partners of MOTREM project has been successfully demonstrated and exploited during the project, as the joint publications and collaborative activities have proven.

The synergistic profiles on different areas such as:

- Treatment technologies (URJC),
- Monitoring and control of WWTP (UST),
- Analytical methodologies (UH),
- Mechanistic and toxicological studies (UNITO) and
- Full-scale applications (AQUALIA)
- Partners from other Water JPI funded projects.

Will be definitively exploited in the future in the form of **new project proposals and collaborations**.

Continuation of work in the future

The <u>complementary expertise</u> of the partners of MOTREM project has been successfully demonstrated and exploited during the project, as the joint publications and collaborative activities have proven.

The synergistic profiles on different areas such as:

- Treatment technologies (URJC),
- Monitoring and control of WWTP (UST),
- Analytical methodologies (UH),
- Mechanistic and toxicological studies (UNITO) and
- Full-scale applications (AQUALIA)
- Partners from other Water JPI funded projects.

Will be definitively exploited in the future in the form of <u>new project</u>

<u>proposals and collaborations</u>.

<u>Looking for funding....</u>

Thanks!

MOTREM

Javier Marugán (URJC, coord.),

Bertram Kuch (UST),

Jukka Pellinen (UH),

Paola Calza (UNITO),

Frank Rogalla (AQUALIA),

Pedro Cano (BRUKER)

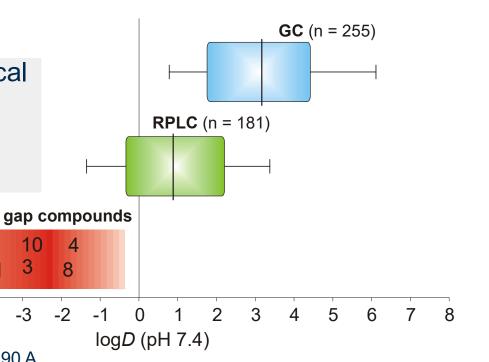
Water JPI
Pilot Call Final Meeting
4th of June 2018, Helsinki

PROMOTE

PROMOTE

PROtecting water resources from MObile Trace chEmicals

<u>Urs Berger</u>, Hans Peter H. Arp, Hervé Gallard, Thomas P. Knepper, Michael Neumann, José Benito Quintana, Pim de Voogt, <u>Thorsten Reemtsma</u>


Background: Persistent and mobile organic chemicals (PMOCs)

Polarity ($log D_{ow}$) of analytes covered by GC- or RPLC-MS analysis

For PMOCs: no analytical method

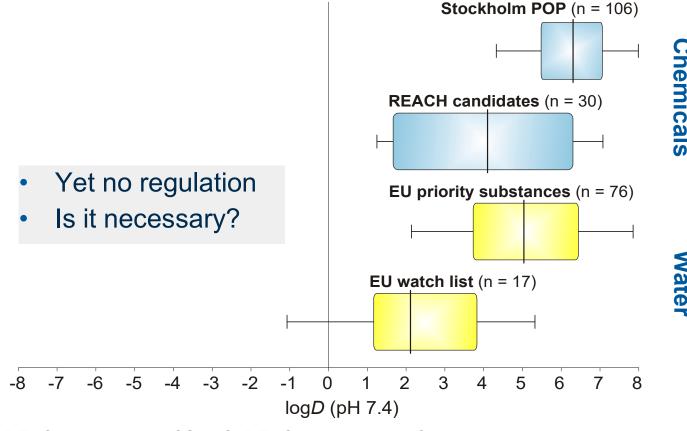
→ no monitoring

→ no findings

GC-MS: EPA methods 8270 D and 8290 A

7 2

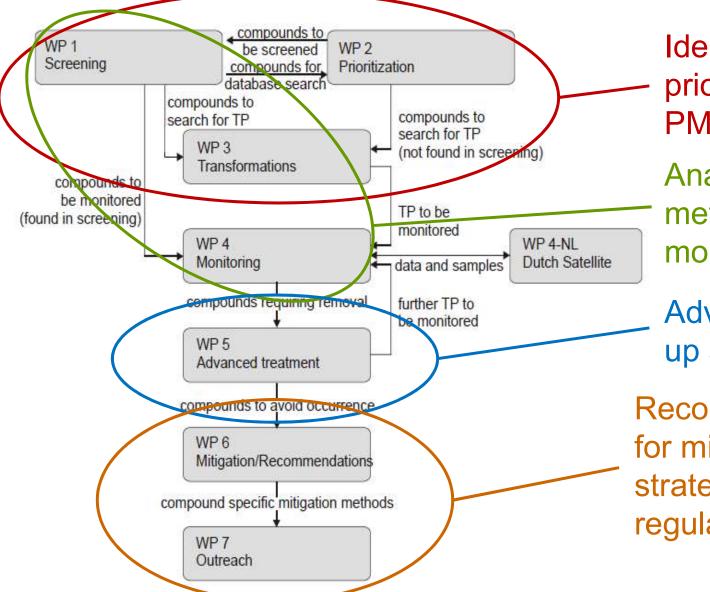
LC-MS: Schymanski et al. (2014) Environ. Sci. Technol. 48, 1811-1818


1: Aminomethylphosphonic acid (AMPA), 2: Paraquat, 3: Cyanuric acid, 4: DMS, 5: Diquat,

6: 5-Fluorouracil, 7: Glyphosate, 8: Melamine, 9: Metformin, 10: Perfluoroacetic acid, 11: EDTA

Background: Persistent and mobile organic chemicals (PMOCs)

REACH candidates of SVHC, REACH, Article 57, d-f
Priority substances according to Water Framework Directive (WFD)
Watch list of the WFD

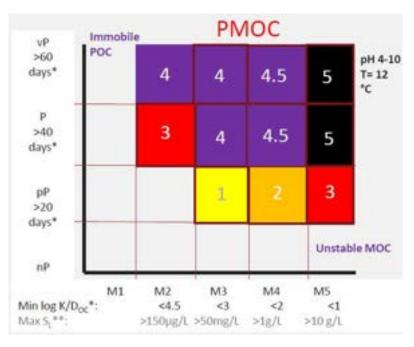


- PROMOTE aimed at answering the question whether there is a need as well as the potential for regulatory protection of drinking water resources with respect to PMOCs
- PROMOTE linked European chemicals policy (REACH) with water policy (e.g. WFD)

PROMOTE work flow

Identification and prioritization of PMOCs

Analytical methods and monitoring


Advanced cleanup strategies

Recommendations for mitigation strategies and regulation

Results: Identification and prioritization of PMOCs by modeling

(H.P.H. Arp, M. Neumann, U. Berger, T. Reemtsma)

Use descriptors

Marketing

volumes

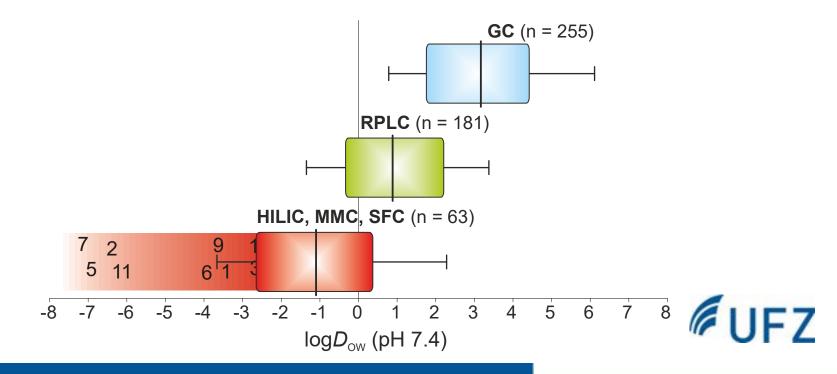
Estimating P and M

Arp et al. (2017) Environ. Sci. Process Impacts, 19, 939-955

Ranking emission potential

Schulze et al. (2018) Sci. Total Environ., 625, 1122-1128

- → Ranked list of 1100 suspected PMOCs
- → 70 compounds chosen for monitoring

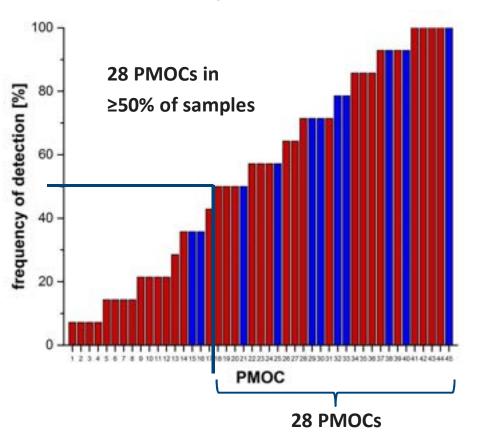


Results: Analytical methods

(J.B. Quintana, T. Knepper, U. Berger, T. Reemtsma)

"Novel" separation methods (chromatography) and detection (MS)

- Supercritical Fluid Chromatography (SFC)-qTOF-HRMS
- Hydrophilic Interaction Liquid Chromatography (HILIC)-MS/MS
- Mixed Mode Liquid Chromatography (MMLC)-qTOF-HRMS



Results: Environmental monitoring

Water JPI PROMOTE

(U. Berger, J.B. Quintana, T. Knepper, P. de Voogt, T. Reemtsma)

14 water samples (surface water, groundwater, bank filtrate, from drinking water treatment steps) from 5 European countries analyzed

A total of 45 (of 70 analyzed) PMOCs detected

- Some PMOCs frequently detected, others in single samples
- Detection of "known" as well as "novel" PMOCs

Results: Environmental monitoring

Water JPI PROMOTE

(U. Berger, J.B. Quintana, T. Knepper, P. de Voogt, T. Reemtsma)

Examples of "novel" PMOCs

Benzyltrimethyl ammonium

Dimethylbenzene sulfonic acid

Trifluoro and CI/Br methanesulfonic acids

cids

sulfonic acid

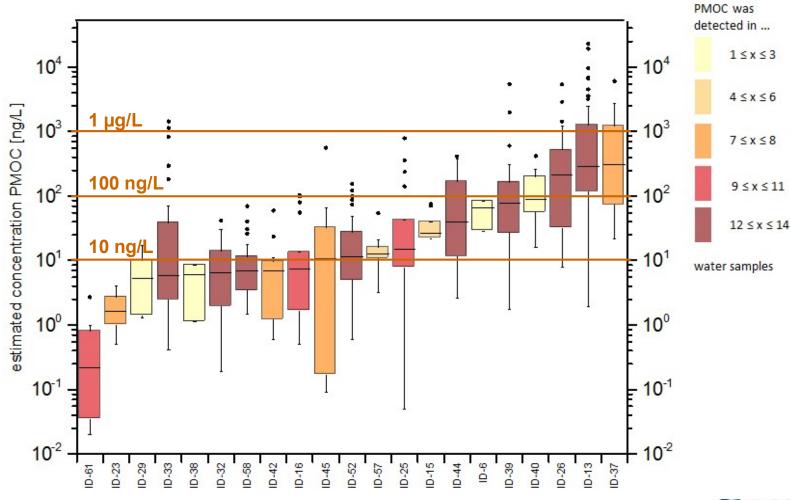
2-Acrylamido-2-

methylpropane

1,3-Di-o-tolylguanidine

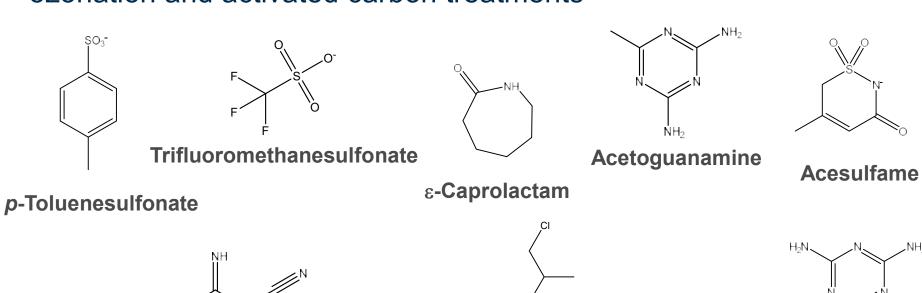
Cyanoguanidine

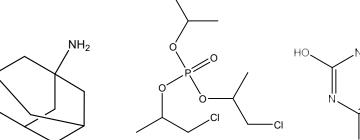
$$H_2N$$
 H_2N


1,3-Diphenylguanidine

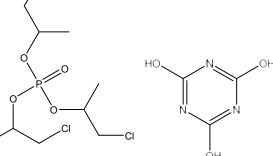
- Processing agents in
 - polymerization
 - vulcanization
 - production of resins
- Tires and rubber
- Disinfectants
- Washing and cleaning agents
- Textile industrie
- Water treatment
- Fertilizer

(U. Berger, J.B. Quintana, T. Knepper, P. de Voogt, T. Reemtsma)




Results: Advanced drinking water

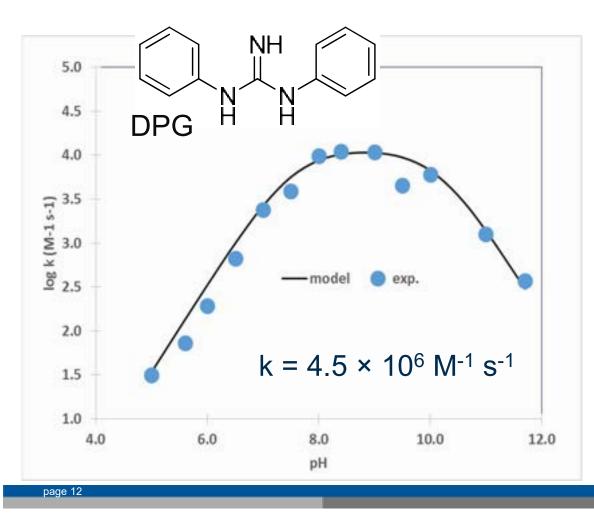
treatment (H. Gallard, J.B. Quintana)


Examples of PMOCs that are only poorly or not at all removed by ozonation and activated carbon treatments

Methylsulfate

Adamantan-1-amine

TCPP



Results: Advanced drinking water treatment (H. Gallard, J.B. Quintana)

Other options? → Transformation with chlorine

Very fast reaction with chlorine $t_{1/2}$ <10 s (1 mg Cl₂/L, pH >7)

BUT

A suite of chlorinated TPs formed that are more persistent and more toxic than DPG!

Kinetic model

HOCI + DPG \rightarrow Products k HOCI = CIO⁻ + H⁺ Ka_{HOCI} DPG⁺ = DPG + H⁺ Ka_G

Results: Advanced drinking water treatment (H. Gallard, J.B. Quintana)

Other options? → High pressure membrane processes

- Nanofiltration (NF) as a polishing treatment after conventional treatments
 - Efficiency depends mainly on the molecular weight (MW) and MW cut-off of the membranes (e.g. NF90 or NF270)
 - Removal rates between 10-20% (small molecules <200-220 g mol⁻¹) and 90% (largest molecules) for NF270 membrane
- Reverse Osmosis (RO) instead of conventional treatments
 - Removal rates usually >80% (e.g. 86% for Caprolactam at 8 bars with BW30LE membrane)
 - High removal rates for ionic (even small) compounds (repulsion)
 - Lower removal rates for neutral small compounds (diffusion)
 - Practicability?

Collaboration

 Highly collaborative environment, strong interactions between WPs and between partners (each WP involved several partners)

Examples

- Analytical method transfer
- PMOC identification and prioritization
- Sampling campaigns (associated partners)
- "Transformation" and "Advanced Treatment" WPs
- Currently ongoing: Recommendations for mitigation

- Coordination and organization was efficient, based on the active participation of all partners and associated partners supporting the consortium
- Mobility: 5 mobility actions performed
 - Method transfer
 - Emission model
 - Regulation (PMOCs as SVHC)
 - Identification of TPs
 - Advanced water treatment methods

- Important stakeholders were directly involved as partners (German Environment Agency) or associated partners (drinking water suppliers) → prerequisite for accomplishment of objectives
- Europe-wide dissemination workshop for stakeholders

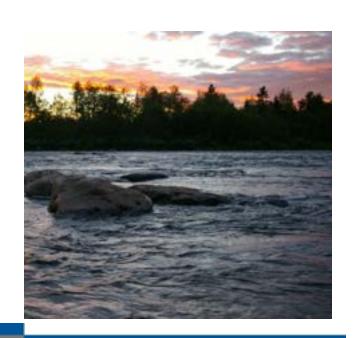
Persistent and Mobile Organic Chemicals in the Water Cycle:

Linking science, technology and regulation to protect drinking water quality

23 - 24 November 2017, in Leipzig, Germany

Contributions from (amongst others)

- European Commission DG Environment
- ECHA
- European Chemical Industry
- National environmental protection agencies
- EU CIS Working Group on Groundwater


- Scientific papers: 10 published/10 manuscripts
- Feature article in ES&T chosen as third runner up of ES&T's best Feature Article of the year 2016
- Project results feed into PMT/vPvM regulatory efforts
- Prioritized PMOC list and analytical methods published
 → way forward is mapped

Continuation of the work in the future

- Two partners and stakeholder have applied for a follow-up project in Germany (BMBF)
- Two partners collaborate on PMT/vPvM regulatory issues
- Two partners and stakeholders prepare a follow-up proposal for INTERREG
- Several single-partner follow-up activities ongoing

Conclusions from PROMOTE

- Number of PMOCs in European water cycles much larger than anticipated
- Analytical gap narrowed, but still many PMOCs not covered by current screening methods
- Water quality monitoring should direct more effort towards PMOCs to ensure drinking water quality
- European chemicals' legislation should consider mobility
- TPs tend to be more mobile than parent chemicals and need to be considered

Acknowledgements

Funding

Water Challenges for a Changing World Joint Program Initiative (Water JPI) Pilot Call 2013

German Federal Ministry for Education and Research (02WU1347A/B) Research Council of Norway (241358/E50)

French Office National de l'Eau et des Milieux Aquatiques (project PROMOTE) Spanish Ministry of Economy and Competitiveness (JPIW2013-117)

Thank you for your attention!

PORTO

Stopping Antibiotic Resistance Evolution Final meeting

Helsinki, 4th June 2018

Célia M. Manaia ESB-UCP

StARE

Consortium 11 partners – 7 countries

Consortium

Microbiology * Molecular Biology * Bioinformatics Analytical Chemistry * Wastewater Treatment Engineering

UCP

Célia Manaia

Ivone Vaz-Moreira Jaqueline Rocha Carlos Narciso-Rocha Pompeyo Ferro

ICRA

Sara Rodriguez-Mozaz Marta Llorca Saulo Varela

CSIC

PORTO

Jose Luis Martinez Felipe Lira

Javier Tamames

Nireas-IWRC, UCY

<u>Despo Fatta-Kassinos</u> Irene Michael-Kordatou Lida Ioannou Stella Michael

NSVS

Henning Sorum
Kristin O'Sullivan

UAVR

<u>Isabel Henriques</u> Marta tação

TUD

Thomas Berendonk
Damiano Caccace

KIT-IFG

Thomas Schwartz
Thomas Jäeger

NUIM

Fiona Walsh

UHel

Marko Virta Katariina Pärnänen

AQUANTEC

Christian Elpers

NORMAN

Network of reference laboratories, research centres and related organisations for monitoring of emerging environmental substances Valeria Dúlio Jaroslay Slobodnik

Center for Microbial Ecology Michigan State University, US Robert Stedtfeld

James Tiedje

GLOBAL ACTION PLAN

ON ANTIMICROBIAL RESISTANCE

3/5

Objective 1: Improve awareness and understanding of antimicrobial resistance through effective communication, education and training

Objective 2: Strengthen the knowledge and evidence base through surveillance and research

Objective 3: Reduce the incidence of infection through effective sanitation, hygiene and infection prevention measures

PORTO

StARE Overview

Scientific and technological results

Collaboration, coordination, mobility, synergies and infrastructures

Stakeholder engagement

Impact and knowledge output

Continuation of the work in the future

StARE Overview

Scientific and technological results

Collaboration, coordination, mobility, synergies and infrastructures

Stakeholder engagement

Impact and knowledge output

Continuation of the work in the future

Objectives

1. Antibiotics and Resistance in European Wastewater

- Implement harmonized (advanced) protocols to measure A & ARG
- Launch a public database on A&ARB&ARG

2. Wastewater treatment and removal of A&ARB&ARG

- Improved A&ARB&ARG mitigation in UWTP
 - Cost-effective wastewater treatment
 - Minimal impact on ARG dissemination, by selection or horizontal gene transfer

Antibiotic resistance in European wastewaters

ANTIBIOTIC RESISTANCE IN CLINICAL ISOLATES IN EUROPE...

Objective 1

Surveillance of antimicrobial resistance in Europe (2013-2016)

Except for carbapenem resistance, large inter-country variations were noted for all antimicrobial groups under regular surveillance, with generally higher resistance-percentages-reported-from the southern and eastern parts of Europe than from northern.

Antibiotic resistance in European wastewaters DDD per 1000 inhabitants and per day (systemic use ATC group J01 antibiotics) < 20.0 -0.4-6.2 °C ≥ 20.0 0.9-6.6 °C 553.2 mm 1122.9 mm 18.2 6.7-12.9 °C 4.4-11.7 °C 1034.7 mm 745.6 mm 16.4 Portuga 21.9 12.2-20.1 °C 11.2-20.7 °C 13.9-23.6 °C 825.4 mm 550.3 mm 391.1 mm

32.6

Approach

DDD *per* 1000 inhabitants and *per* day (systemic use ATC group J01 antibiotics)

- Common protocols (sampling, extraction, analysis)
 - Common sampling dates: 9 days/ 3 campaigns

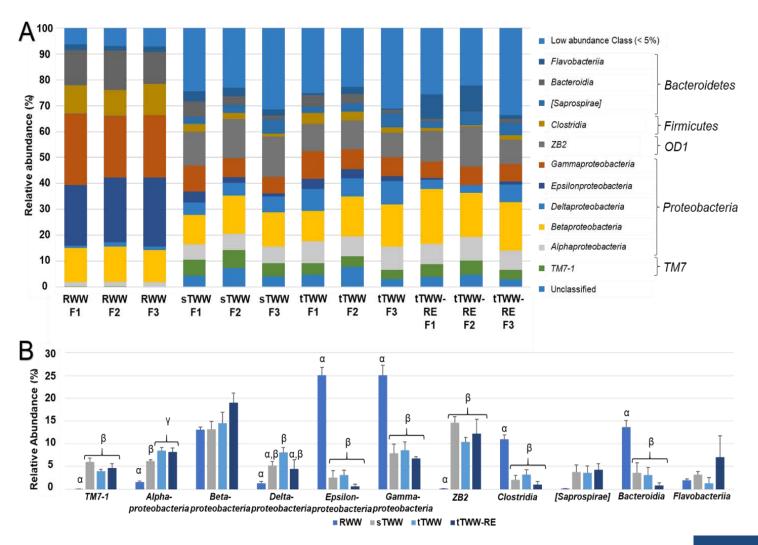
Antibiotic Residues (53)

Antibiotic Resistance Genes

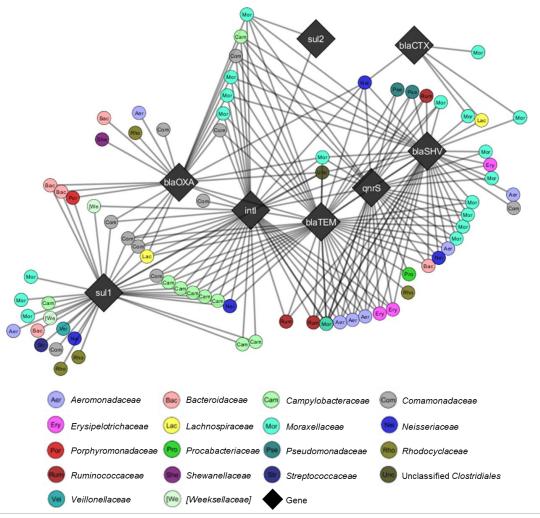
(ARG, qPCR array) (384)

Culturable bacteria

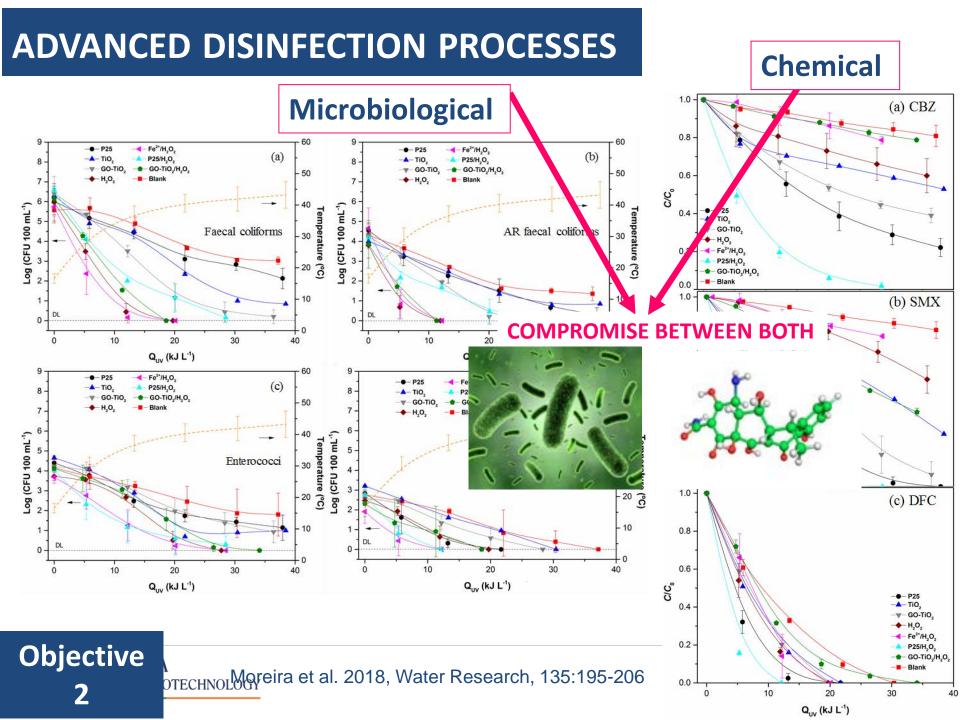
(total and antibiotic resistant)



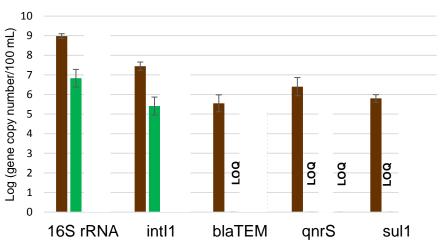
Portugal 21.9


Objective

Microbiome dynamics during treatment

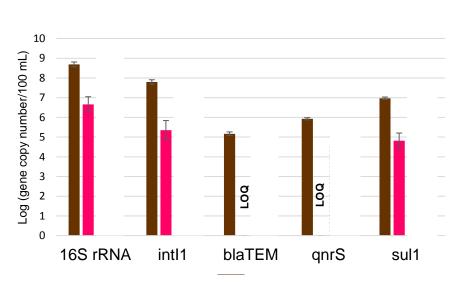


ARGs associated with human- and animal related bacteria

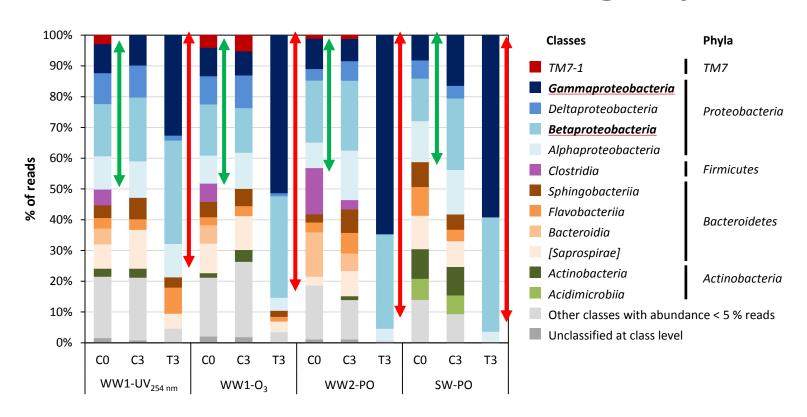


ADVANCED DISINFECTION PROCESSES

Self-replication


Ozonation

Untreated control



PORTO

SELF-REPLICATION

...is not identical for all bacterial groups...

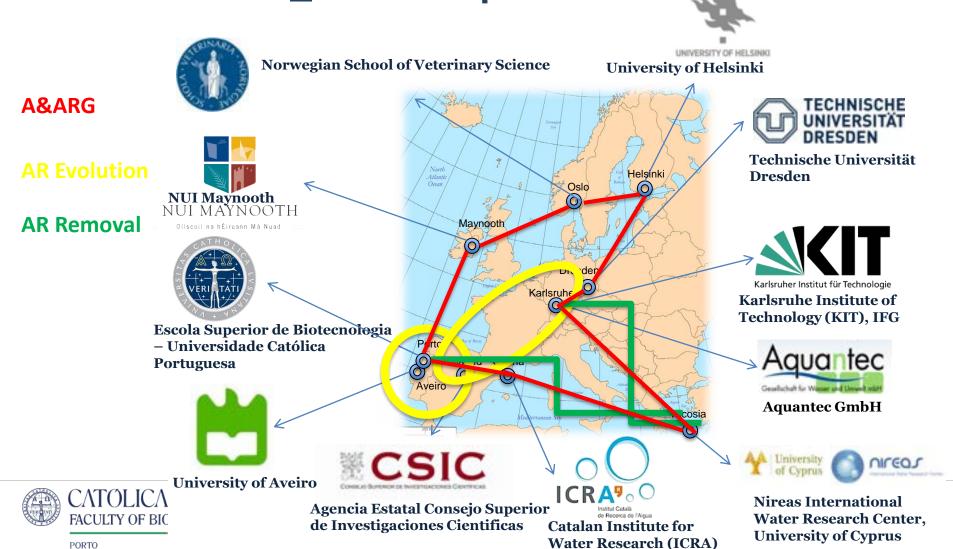
Most fitted groups include those able to acquire AR?

StARE Overview

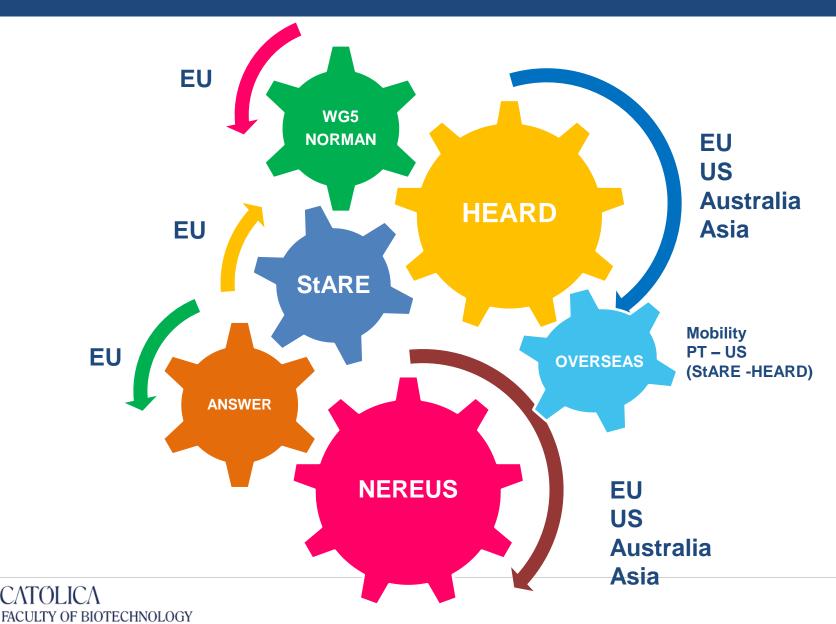
Scientific and technological results

Collaboration, coordination, mobility, synergies and infrastructures

Stakeholder engagement


Impact and knowledge output

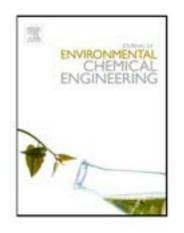
Continuation of the work in the future



Collaboration, coordination and mobility

9 Mobility actions − 12 months 12 Publications ≥ 2 StARE partners

External collaborations



External collaborations

Accepted Manuscript

Title: Inter-laboratory calibration of quantitative analyses of antibiotic resistance genes

Authors: Jaqueline Rocha, Damiano Cacace, Ioannis Kampouris, Hélène Guilloteau, Thomas Jäger, Roberto B.M. Marano, Popi Karaolia, Célia M. Manaia, Christophe Merlin, Despo Fatta-Kassinos, Eddie Cytryn, Thomas U. Berendonk, Thomas Schwartz

Cite This: Environ, Sci. Technol, 2017, 51, 13061-13069

pubs.acs.org/est

Feature

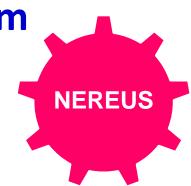
Toward a Comprehensive Strategy to Mitigate Dissemination of Environmental Sources of Antibiotic Resistance

Peter J. Vikesland,**,^{†,‡} Amy Pruden,^{†,‡} Pedro J. J. Alvarez,^{⁵,©} Diana Aga,^{□,©} Helmut Bürgmann,[⊥] Xiang-dong Li,[#] Celia M. Manaia, Indumathi Nambi, Krista Wigginton,^{♠,©} Tong Zhang,^{□,©} and Yong-Guan Zhu^{⊗,©}

External collaborations

COST Action ES1403

New and emerging challenges and opportunities



Cefotaxime-resistant fecal coliform survey

Eddie Cytryn et al.

Global cefotaxime-resistant fecal coliform survey participants

Countries	Groups	WWTPs	Campaigns	Seasons
22	36	54	5	2

StARE Overview

Scientific and technological results

Collaboration, coordination, mobility, synergies and infrastructures

Stakeholder engagement

Impact and knowledge output

Continuation of the work in the future

Stakeholder engagement

Professionals (water management; public health, other): personal communication, sharing of research data

National Workshop in Portugal (15 April 2016)

~200 attendees

National Workshop in Cyprus (2 March 2017)

>20 invited keynote or plenary talks in (inter)national meetings attended by policy making and water management entites

General public: Media communication (e.g. TV, radio)

Summary

Scientific and technological results

Collaboration, coordination, mobility, synergies and infrastructures

Stakeholder engagement

Impact and knowledge output

Continuation of the work in the future

Impact and knowledge output

Training

> 12 students enrolled (10 PhD students)

Scientific impact

- > 40 publications in international peer-reviewed journals
- > 60 communications in international conferences

Stakeholders and community

> 40 popularization events (18 articles; 13 conferences, 10 live media, etc)

Technology transfer

Collaboration with two water treatment SMEs

Impact and knowledge output

First European integrated wastewater surveillance

Important drivers for resistance => improvement of wastewater treatment

Training

> 12 students enrolled (10 PhD students)

Scientific impact

- > 40 publications in international peer-reviewed journals
- > 60 communications in international conferences

Stakeholders and community

> 40 popularization events (18 articles; 13 conferences, 10 live media, etc)

Technology transfer

Collaboration with two water treatment SMEs

StARE Overview

Scientific and technological results

Collaboration, coordination, mobility, synergies and infrastructures

Stakeholder engagement

Impact and knowledge output

Continuation of the work in the future

Continuation of the work in the future

ARGs database open data

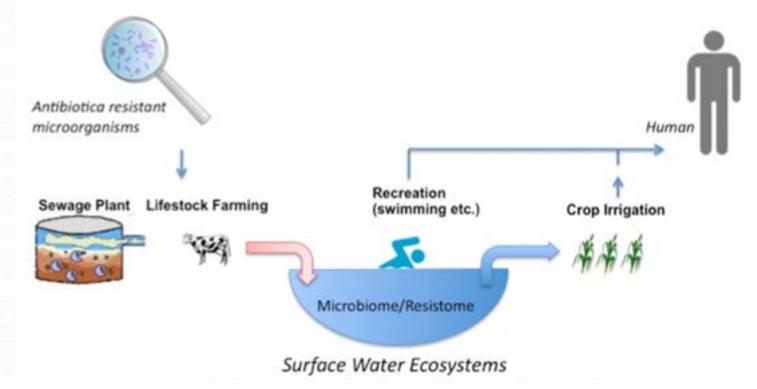
 Results dissemination in generalist journals and stakeholder- and public-oriented events

- New projects
 - Demonstration/implementation projects with companies (approved; applications in preparation – National funds, Life, Interreg, JPIAMR, Marie Curie, etc)

Thank you!

TRACE

Tracking and Assessing the Risk from Antibiotic Resistance Genes using Chip Technology in Surface Water Ecosystems (TRACE)


Wolfgang Fritzsche

Final Evaluation Meeting of the Water JPI
Pilot Call Projects
"Impact to Science and to Society"
Marina Congress Centre, Helsinki, Finland
June 4th 2018

Focus of TRACE

- Understand the sources and behaviour of antibiotic resistance in natural surface waters and infection routes
- Development of a novel detection technologies as (I) a on-site fast assay as well as (2) a chip-based solution to detect a panel of antibiotic resistance genes (ARG) for waterborne microorganisms, allowing time- and cost-efficient evaluation of AR patterns and the associated risk for human health

Partners

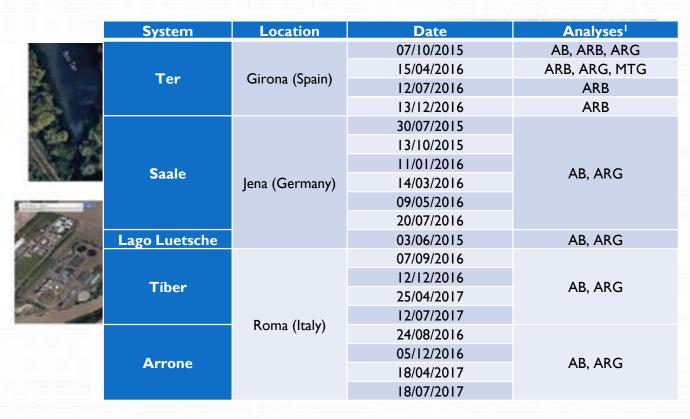
Scientific and technological results - Characterization of impacted sites

Saale (GE) Arrone (IT) Tiber (IT) Ter (SP) Other Luetsche lake (GE) Ostia Beach (IT)

Scientific and technological results - Identification of biomarker genes

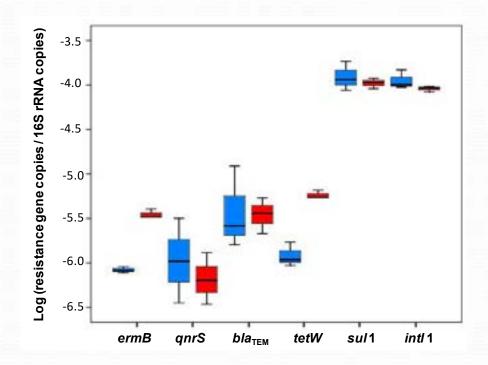
Selected Genes

Gene	Product	Resistance to / Mode of action	Number of Variants	Target variant
qnrS	Pentapeptide repeat family, which protects DNA gyrase from inhibition by quinolones	Fluoroquinolones / DNA replication	5	qnrSI
bla _{TEM}	Class A ß-lactamases that hydrolyse penicillin and related antibiotics	Beta-lactam antibiotics / Cell wall synthesis	Many	bla _{TEM-1}
intH	Class I integron integrase	Gene capture	None	Anthropogenic pollution
uidA	ß-glucuronidase	Hydrolysis of glucoronides	E. coli (≈97%) Shigella Salmonella	Fecal contamination of water



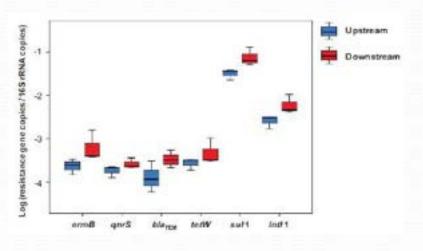
ARGs

Scientific and technological results - Characterization of impacted sites



Scientific and technological results – Quantification of ARGs

Relative concentration of ARGs in water samples from impacted (red) and non-impacted (blue) sites at the Luetsche Lake.

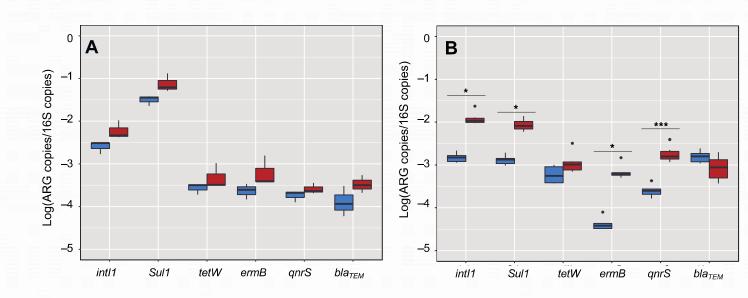


Scientific and technological results – Quantification of ARGs

Antibiotic pollution and abundance of ARGs in river Ter

Antibiotic exposition in river Ter samples collected upstream and downstream sites

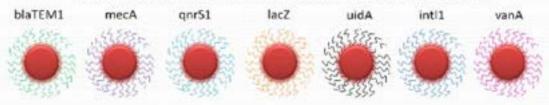
Relative concentration of ARGs in river Ter



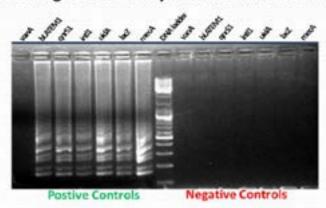
Scientific and technological results -

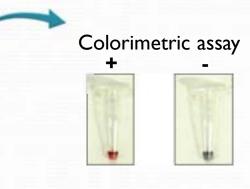
Quantification of ARGs

Normalized concentration of target ARGs in water samples from river Ter collected upstream (blue) and downstream (red) the WWTP effluent discharge point in October 2015 (A) and April 2016 (B).



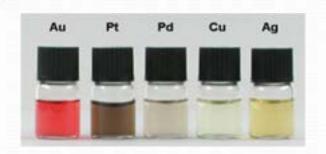
Scientific and technological results -


On-site detection technology development – A: Fast Assay


 Simple semi-quantitative assay for point-of-need: gold nanoprobes-based colormetric assay for marker pathogen and ARG identification

Gold Nanoprobes developed for the detection of ARGs

LAMP design and development for each of the ARGs

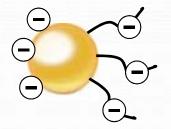


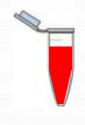
Localized Surface Plasmon Resonance (LSPR)

composition

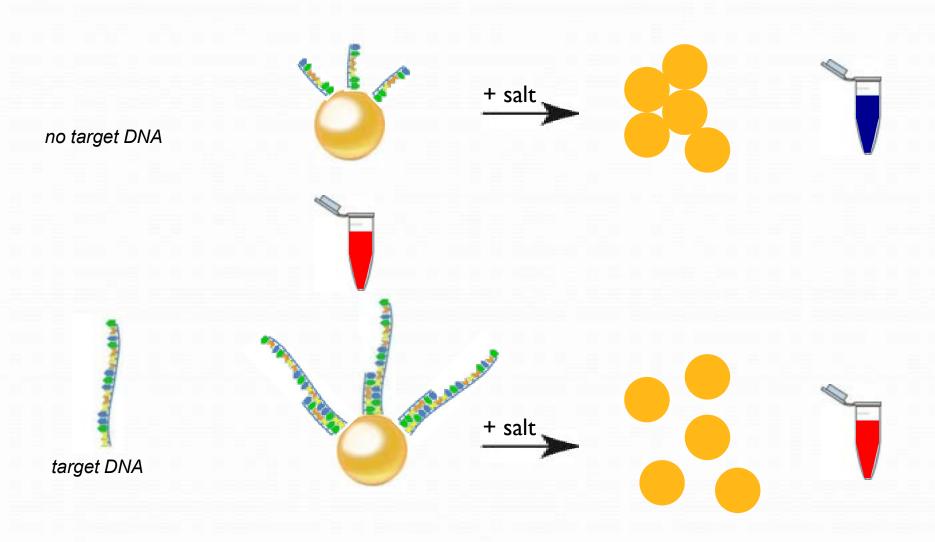
size

geometry

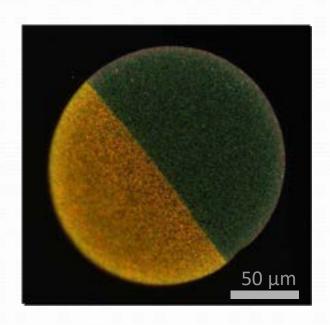

aggregation



electrostatic



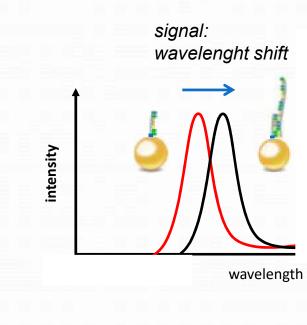
stabilization


DNA sensing by LSPR



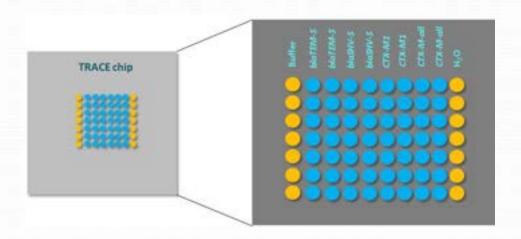
Scientific and technological results -

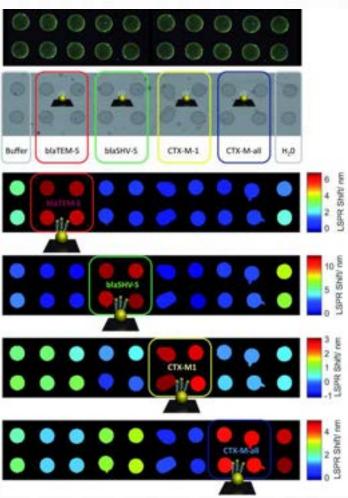
On-site detection technology development – B: Microarray


environment

DNA sensing by LSPR

probe DNA (surface attached): capture DNA

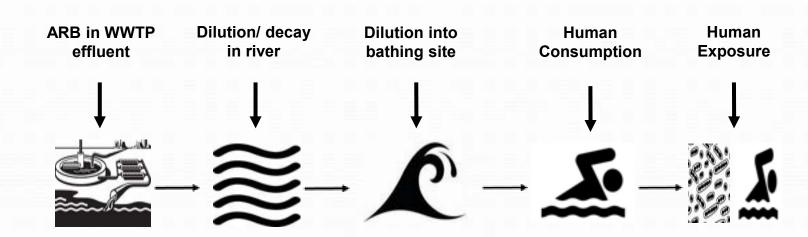

target (analyte) DNA



Scientific and technological results -

On-site detection technology development - B

Microarray chip for 4 ARGs



Scientific and technological results

Human Health Risk Assessment Model

Risk models for the prediction of environmental behaviour of antibiotic-resistant microorganisms in surface waters

- Drinking water model
- Recreational water model
- Irrigations model

Collaboration, coordination, mobility – Interactions in Consortium

- FFCT and ICRA developed a straight collaboration during this period for the evaluation of the ARGs selected by the consortium
- Sample sharing, e.g. FOOD provides samples from Germany to ICRA and to IPHT
- Ongoing site characterization for risk analysis with close collaboration between UCD, ICRA, Uniroma
- All the necessary FASTA files for sequence alignment in order to develop LAMP primers and probes sequences were provided by ICRA to FFCT
- DNA templates and biological samples were provided by ICRA to FFCT for LAMP amplification and posterior detection with Au-nanoprobes.
- Exchange of PhD students between Uniroma and ICRA was done on May 2017. Particularly, one student from Uniroma carried out a short stay (I-month) to learn the basics of qPCR technique for the quantification of ARGs in samples collected at the Italian systems (Ostia beach, rivers Tiber and Arrone).
- IPHT and FOOD are in direct contact related to practical protocols and PCR samples to validation.
- ICRA and UNL provide samples for validation by FOOD/IPHT.
- IPHT hold strong cooperation with all partners and coordinated the work as well as dissemination: home-page, joint poster presentation, etc.
- Four joint meetings were organized (ICRA, Uniroma, UCD and IPHT) with the participation of all project partners and external attendees. The project was finished with a workshop with internal as well as external presentations.

\rightarrow Strong interactions in consortium, both scientific as coordinative, synergies

Collaboration, coordination and mobility - Consortium Meetings

N	1°	Date	Location	Attending partners	Purpose
	ı	15/06/2015	Girona	All	Kick-Off meeting : Coordination of project activities and research plan, Sampling schedule of model ecosystems Coordination issues, Agreement on firsts deliverables, creation of project website.
2	2	26/06/2016	Rome	All	Mid-Term meeting: Prediscussion, - Milestones activities and project delay Coordination issues, Disse conferences, stakeholder engagement, etc.)
3	3	29- 30/06/2017	Dublin	All	Last-Term meeting: Presentat stakeholders, General discussion delays, Coordination issues, Disse publications, conferences, stakeholders, stakeholders, General discussion delays, Coordination issues, Disse publications, conferences, stakeholders, General discussion delays, Coordination issues, Disse publications, conferences, stakeholders, General discussion delays, Coordination issues, Disse publications, conferences, stakeholders, General discussion delays, Coordination issues, Disse publications, conferences, stakeholders, General discussion delays, Coordination issues, Disse publications, conferences, stakeholders, General discussion delays, Coordination issues, Disse publications, conferences, stakeholders, General discussion delays, Coordination issues, Disse publications, conferences, stakeholders, General discussion delays, Coordination issues, Disse publications, conferences, stakeholders, General discussion delays, Coordination de
,	4	7-8/12/2017	Jena	All	Final meeting : Presentation of final results to partners and stakeholders, pending tasks and problems unsolved, coordination issues, publication and dissemination strategy.

Collaboration, coordination and mobility - Conferences and Workshops, dissemination

- Participation on
 - 19 conferences and workshops, national and international
- Home page: http://jpi-trace.eu/
- Linkedin group: https://www.linkedin.com/groups/8385238
- Local actions adressing the general public

Stakeholder engagement

- The UCD-team has 6 monthly project meetings and has a project steering group with relevant stakeholders included. This includes representatives from the Irish EPA and Irish water (water utility company in Ireland responsible for all water services including water treatment and distribution).
- TRACE workshop 2017 (Dublin): A workshop event focusing AR was organised by UCD project partners at the University College Dublin on June 29th 2017. The event was attended by stakeholders (Irish water, HSE), companies (H2Ozone, Quest Utility Services, Humanist Times), general public, steering committee (EPA, King's College London, Brunel University), researchers (University Limerick, NUI Maynooth, NUI Galway, Ulster University, Dublin Institute of Technology, Limerick Institute of Technology iCRAG, Trinity College Dublin) and TRACE project partners (58 participants).
- **TRACE workshop 2018 (Jena):** A workshop event was organized by IPHT on 7th December 2017. This event was organized from the project coordinator with participation of researcher (project partners as well as clinical and federal research institutes) and public administrations (e.g., Thuringian water reservoir administration).

Impact and knowledge output

- 1. O'Flaherty, E., C.M. Borrego, J.L. Balcázar and E. Cummins (2017) Human exposure assessment to antibiotic-resistant Escherichia coli through drinking water. Sci. Total Environ. Vol. 616-617, pp.1356-1364. doi.org/10.1016/j.scitotenv.2017.10.180
- 2. Subirats, J., X. Triadó-Margarit, L. Mandaric, V. Acuña, J.L. Balcázar, S. Sabater and C.M. Borrego (2017) Wastewater pollution differently affects the antibiotic resistance gene pool and biofilm bacterial communities across streambed compartments. Molecular Ecology, 26: 5567–5581.
- 3. Lekunberri I., M. Villagrasa, J.L. Balcázar and C.M. Borrego (2017) Contribution of bacteriophage and plasmid DNA to the mobilization of antibiotic resistance genes in a river receiving treated wastewater discharges. Sci. Total Environ. 601–602: 206-209. DOI: 10.1016/j.scitotenv.2017.05.174.
- 4. Lekunberri, I., J.L. Balcázar and C.M. Borrego (2017) Detection and quantification of the plasmid-mediated mcr-1 gene conferring colistin resistance in wastewater. Internat. J. Antimicrob. Agents. 50(6): 734–736. DOI: 10.1016/j.ijantimicag.2017.08.018.
- 5. Subirats, J., E. Royo, J.L. Balcázar and C.M. Borrego (2017) Real-time PCR assays for the detection and quantification of carbapenemase genes (blaKPC, blaNDM and blaOXA-48) in environmental samples. Environ. Sci. Pollut. Res. 24:6710–6714. DOI: 10.1007/s11356-017-8426-6.
- 6. Lekunberri, I., J. Subirats, C.M. Borrego and J.L. Balcázar (2017) Exploring the contribution of bacteriophages to antibiotic resistance. Environ. Pollut. 220(Pt B):981–984. DOI: 10.1016/j.envpol.2016.11.059
- 7. Subirats, J., A. Sànchez-Melsió, C.M. Borrego, J. L. Balcázar and P. Simonet (2016) Metagenomic analysis reveals that bacteriophages are reservoirs of antibiotic resistance genes. Internat. J. Antimicrobial Agents 48: 163-167. DOI: 10.1016/j.ijantimicag.2016.04.028.
- 8. O'Flaherty E and Cummins E. (2017a). Antibiotic resistance in surface water ecosystems: presence in the aquatic environment, prevention strategies and risk assessment. Human and Ecological Risk Assessment Vol. 23, No. 2, pp. 299–322. doi.org/10.1080/10807039.2016.1247254
- 9. Li, G., D. Zopf, G. Schmidl, W. Fritzsche, and O. Stranik. "Concentric Dot-Ring Metal Nanostructures Prepared by Colloidal Lithography." Applied Physics Letters 109, no. 16 (2016): 163101.
- 10. Thiele, Matthias, Andrea Knauer, Daniell Malsch, Andrea Csaki, Thomas Henkel, J. Michael Kohler, and Wolfgang Fritzsche. "Combination of Microfluidic High-Throughput Production and Parameter Screening for Efficient Shaping of Gold Nanocubes Using Dean-Flow Mixing." Lab on a Chip 17, no. 8 (2017): 1487-95.
- 11. Kosman, Joanna, Jacqueline Jatschka, Andrea Csaki, Wolfgang Fritzsche, Bernard Juskowiak, and Ondrej Stranik. "A New Strategy for Silver Deposition on Au Nanoparticles with the Use of Peroxidase-Mimicking Dnazyme Monitored Via a Localized Surface Plasmon Resonance Technique." Sensors 17, no. 4 (2017): 849.

Under review:

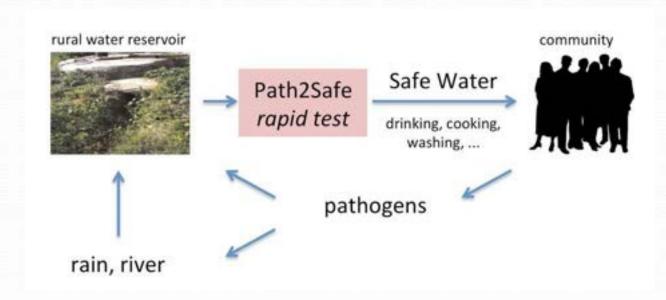
- O'Flaherty E., Membré JM. and Cummins E. (2018a) Meta-analysis of the reduction of sensitive and antibiotic resistant Escherichia coli as a result of low and medium pressure UV lamps
- O'Flaherty E., Solimini A. Pantanella F. and Cummins E. (2018b). Human exposure assessment to antibiotic resistant Escherichia coli through the
 irrigation of lettuce.

Manuscripts in preparation

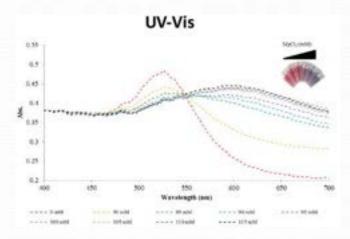
- 1. Lekunberri, I., M. Villagrasa, J.L. Balcázar, B. Giese, J. Müller and C.M. Borrego. Seasonal variations of ARGs in the Saale River (Germany).
- 2. Lekunberri, I., G. Venutto, J. Subirats, A. Solimini, J.L. Balcázar and C. M. Borrego. Antibiotic resistance in two Italian rivers impacted by wastewater treatment plant discharges.
- 3. Ferreira, C.F., A.S. Matias, C. Roma-Rodrigues, J. Subirats, I. Lekunberri, J.L. Balcázar, C.M. Borrego and P.V. Baptista. Au-nanoprobes coupled to
 isothermal amplification for screening antibiotic resistance genes in surface waters.
- 4. O'Flaherty E., Solimini A. Pantanella F. and Cummins E. (2018c). Human exposure assessment to antibiotic resistant Escherichia coli through recreational water.
- 5. Zopf, D., Pittner A., Dathe A., Grosse N., Csáki A., Fritzsche W., Stranik O. Pathogen identification and detection by plasmonic microarray
- 6. Solimini, Venuto, Gagliardi, Schippa, De Giusti, Pantanella. Quantification of antibiotic resistant E. coli in two river systems of Central Italy

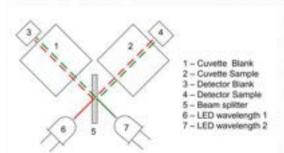
Impact and knowledge output

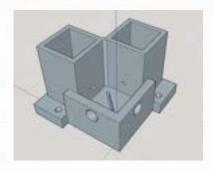
- Better knowledge on the impact of wastewater discharges on water systems (rivers Ter and Saale).
 Antibiotic pollution in both rivers and the impact of the anthropogenic pollution on the river resistome and mobilome were evaluated.
- Effect of wastewater discharges on the concentration of virulent and antibiotic-resistant E. coli in rivers Ter, Tiber and Arrone \rightarrow risk to human health \rightarrow elaboration of appropriate risk assessment models.
- The Meta-analysis model can be used to improve accuracy of risk assessment models investigating the effect of UV treatment on AR or AS E. coli. In particular risk assessment models examining the human exposure to AR E. coli through drinking water or examining the impact of a WWTP located near a recreational site could use this data to predict AR or AS E. coli concentrations found after UV treatment. The Drinking water model can provide guidelines to water management entities on the best water treatment combinations to use to provide the lowest human exposure to AR E. coli. The results can help set acceptable levels of AR E. coli in source water for DWTP. This study shows how research and risk assessment can help improve water regulations. The Irrigation model could help set local guidelines for producers on maximum permissible contamination levels in irrigation water. The results provide recommendations on the most suitable post-harvest treatment to use to reduce the human exposure to AR E. coli. The Recreational model also provides information on the possible human exposure levels to AR E. coli through recreational water.
- The nanoprobe based systems still require optimization but may be used for fast screening of the relevant ARGs in water beds. LAMP is a robust, yet simpler, alternative to PCR based approaches and the Aunanoprobes potentiate specificity of amplification analysis. The system might be of use for the fast screening at point of need without the need for cumbersome equipment. Possible translation to a SME is under evaluation.
- The (nano)technological development of a plasmonic-array chip platform for multiplex molecular detection with optical readout allows for an effective discrimination of several targets in one assay, surpassing limitations of established analytical approaches in that field.

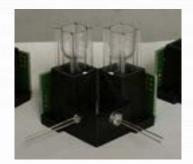

Continuation of the work in the future

 Application "A sustainable strategy for the self-management of water safety in low resource settings using a rapid pathogen screening - Path2Safe" submitted in the research funding initiative PRIMA (partnership for research and innovation in the Mediterranean area) in March 2018.

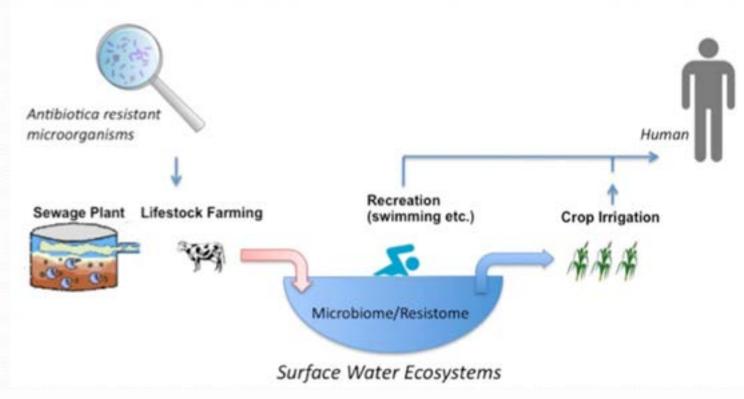

A sustainable strategy for the self-management of water safety in low resource settings using a rapid pathogen screening - Path2Safe




A sustainable strategy for the self-management of water safety in low resource settings using a rapid pathogen screening - Path2Safe



Matthias Urban



Continuation of the work in the future

- Application "A sustainable strategy for the self-management of water safety in low resource settings using a rapid pathogen screening - Path2Safe" submitted in the research funding initiative PRIMA (partnership for research and innovation in the Mediterranean area) in March 2018.
- An international project "One Platform- Multiple biomarker detection of Rheumatoid Arthritis RA-detect" between the partners from Lisbon and Jena on antibody-based multiplex detection (with the microarray analyser of TRACE) is running.
- DAAD proposal "Plasmonic nanoarray for detection of prostate cancer biomarkers" between UNL and IPHT is starting at 2018.
- Additionally, several bilateral communication channels between the project partners were established und continued in future, as the joint participation conferences and meetings.

