

THERBIOR

Thermal Energy Recovery from a Novel Sequencing Batch Biofilter Granular Reactor

Francisco J. Batlles Garrido Claudio Di Iaconi Ivan Muñoz

Water JPI WaterWorks2014 Cofunded Call 8 May 2018, Larnaca, Cyprus

Contents

- Project Overview
- Project Timeline (1st year)
- Scientific and technological progress
- Collaboration, coordination and mobility
- Status of milestones/deliverables
- Stakeholder/Industry engagement
- Dissemination of the results
- Identified problems

THERBIOR Consortium

Academic sector

 Almeria University, The Solar Resource Assessment and Climatology Group and the International Management School group: Coordinator

The National Research Council - The Water Research Institute (CNR-IRSA)

Private sector

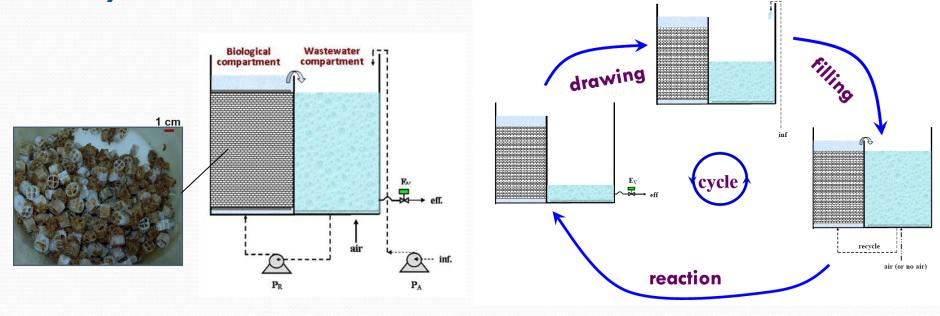
2.-0 LCA consultants

Hedera Helix Ingenieria y Biotecnologia S.L.

Project duration: 2 years

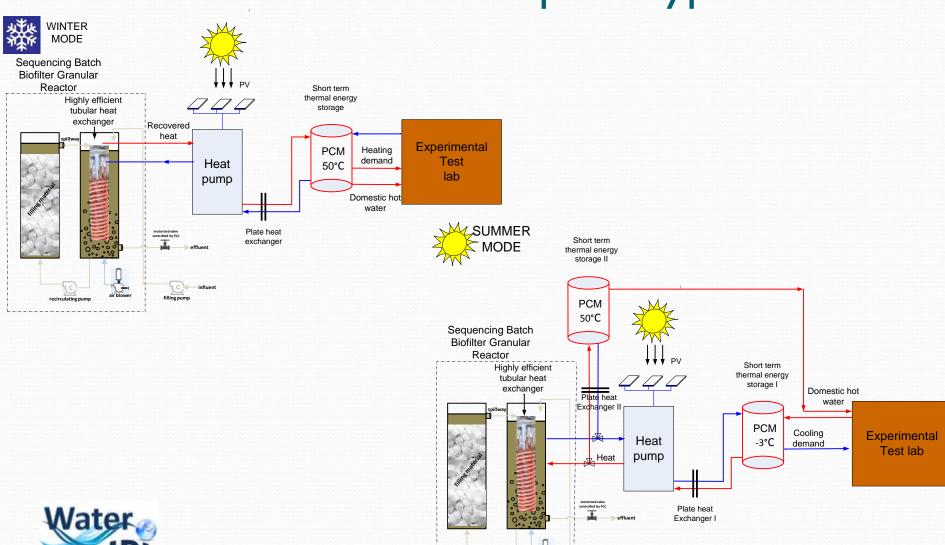
Start date: 01.04.2016 End date: 31.03.2018

http://www2.ual.es/therbior/

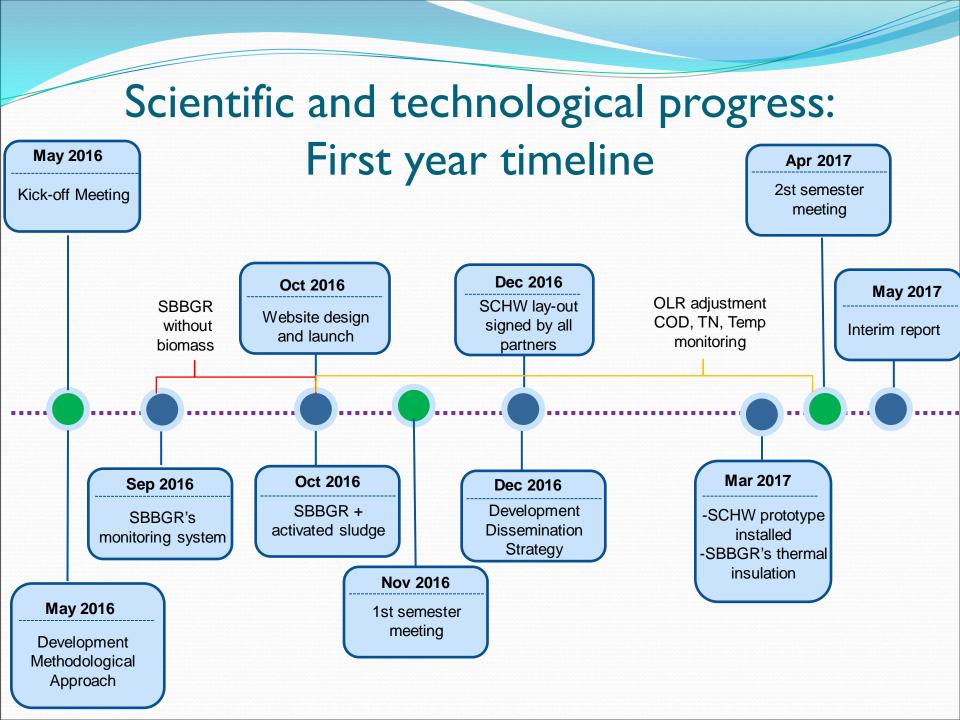


Overall research aim

Development and demonstration of a fully off-grid, solar-assisted heat pump (SHP) coupled with the novel Sequencing Batch Biofilter Granular Reactor (SBBGR) as an innovative technological strategy to fight energy efficiency problems in WWTPs


Why a SBBGR in THERBIOR?

- Prevention of biofouling in heat exchangers
- Can operate at rather low temperatures
- Long SRT maximizes chemical energy release



The THERBIOR prototype

recirculating pump

Mid Term Review-THERBIOR

Scientific and technological progress May 2016

SBBGR and ETL at CNR-IRSA before start of the project

September 2016

SBBGR's supervision control and data acquisition systen

wind vane [°]

Humidity [%]

ORP [mV]

Airflow [SLPM]

Anemometer [m/s]

* C W X

MIUR

Innovationsfonden

20

292

45,7

8,6

109

Data monitoring

- SBBGR performance parameters (2 analysis per week)
 - COD

Nitrogen

BOD

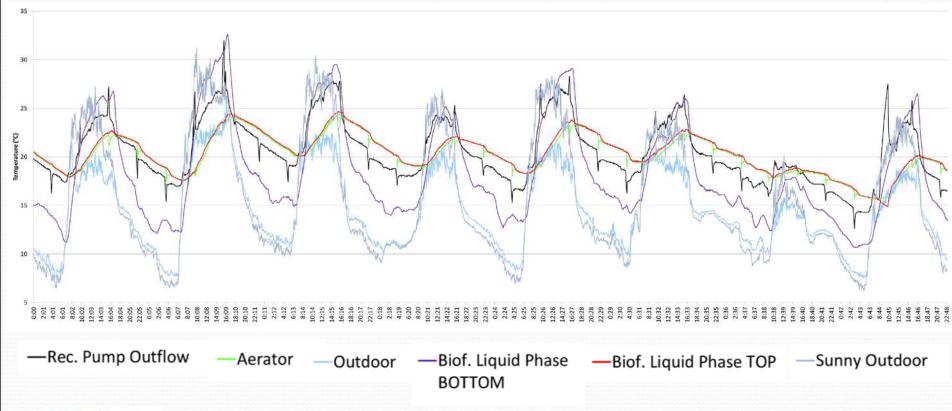
pH

DOC

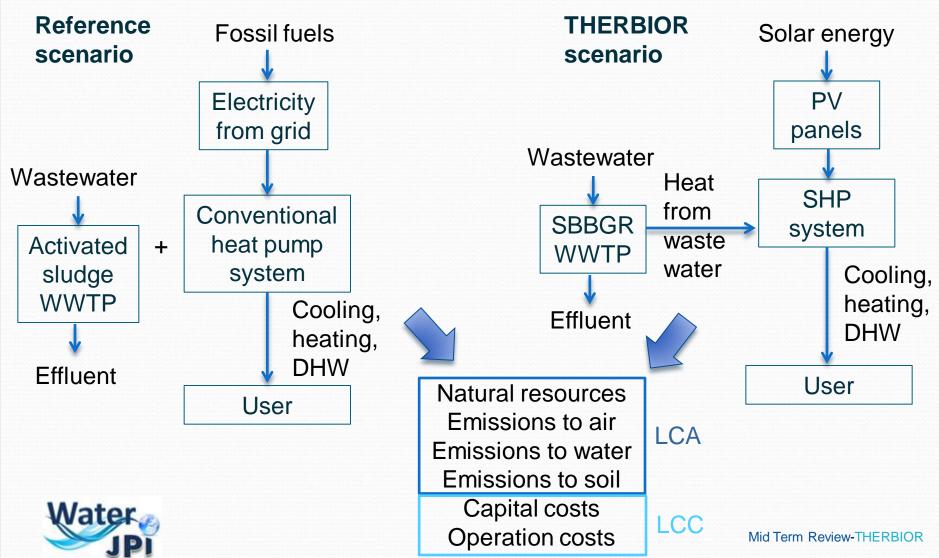
conductivity

TSS

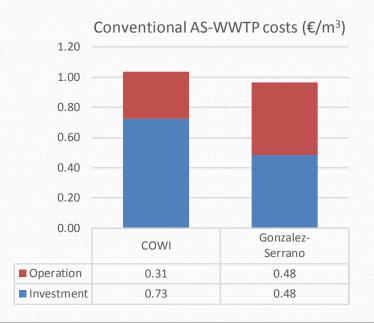
- Sludge production
- Thermal energy recovery parameters (continuous)
 - T in several points
 - Air and water flow and T

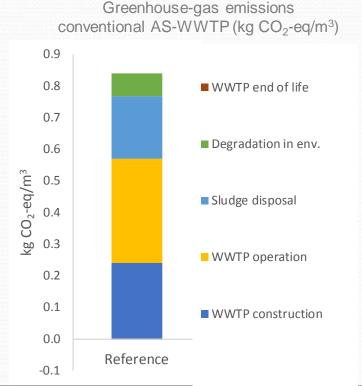

SBBGR performance

		Start-up	Feb-Mar'l7
COD	Influent (mg/L)	398	926
	Effluent (mg/L)	31	74
	Removal (%)	92	92
TSS	Influent (mg/L)	104	207
	Effluent (mg/L)	19	35
	Removal (%)	81	83
TN	Influent (mg/L)	61	49
	Effluent (mg/L)	45	3
	Removal (%)	26	94
NH4+	Influent (mg/L)	49	36
	Effluent (mg/L)	0,4	I
	Removal (%)	99	98
P	Influent (mg/L)	8	6
	Effluent (mg/L)	6	5
	Removal (%)	25	18

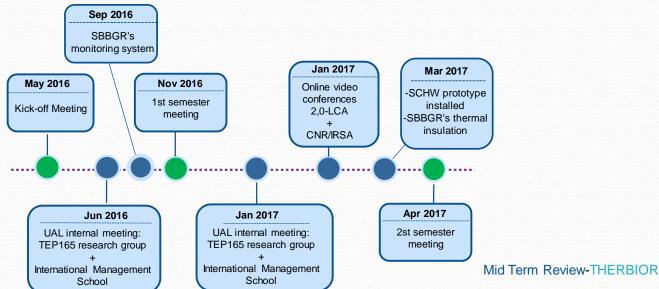

SBBGR temperature profiles

20-28 March 2017




Life cycle assessment / life cycle costing

Life cycle assessment / life cycle costing


- First year progress:
 - Scoping the studies (5000-PE scenario)
 - Data sources for the reference scenario (mass balances, costs, etc.)
 - Establish a model in LCA software

Collaboration, coordination and mobility

- Consortium cooperation has led to design and implementation of the THERBIOR prototype in just 1 year
 - 3 consortium meetings (Rome, Almería, Barcelona)
 - Several bilateral partner meetings (face to face, online)
 - 2 installation campaigns (SBBGR monitoring system, SHP system

Status of milestones and deliverables

All <u>milestones</u> foreseen for the reporting period <u>are achieved</u>:

M0.1: kick-off meeting

M0.2: 1st semester meeting

M0.3: 2nd semester meeting

M1.1: Measurement data and observations collected

M5.1: Dissemination plan

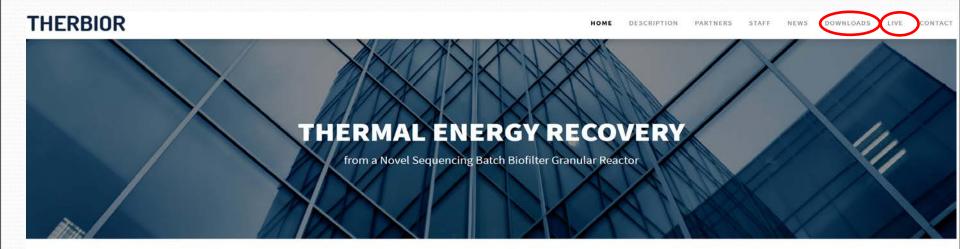
M5.2: Website

Status of <u>deliverables</u> foreseen for the reporting period:

- D0.1. Interim Report. Accomplished
- D1.1. Report on daily and seasonal temperatures trends and SBBGR reactor efficiency (M12 postponed to M18)
- D1.2. Report on the energy balance and thermal energy recovery rate evaluation (M12 postponed to M18)
- D2.1. Report on the PV selection and assembly design strategy. Accomplished
- D2.2. Selection of the efficient THEx technology submersed in the SBBGR reactor. Accomplished
- D2.3. Report on the PCM selection strategy. Accomplished
- D2.4. Report on the technology selection for the SCHW system. Accomplished
- D2.5. Description of the SCHW pilot plant's final design. Accomplished
- D5.1. Dissemination plan. Accomplished
- D5.2. Public information portal. Accomplished

Stakeholder & industry engagement

- Little stakeholder involvement so far, focus has been put on achieving the technical-scientific goals
- THERBIOR has been presented to two companies:
 - ICMEA: Italian SME providing engineering services
 - CISA: large Italian company working in the fields of solid waste, treatment of gaseous emissions and energy.
- Higher level of stakeholder involvement expected during the second year, in Bari and Almería



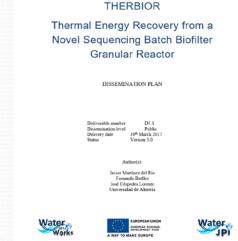
https://www.icmea.it/

Dissemination

• Main output so far is the project's website:

http://www2.ual.es/therbior/

Therbior is a research project funded by European Union


Description

THERBIOR focuses on the development, implementation and diffusion oftechnologies to improve energy efficiency in wastewater treatment plants (WWTPs) using a fully off-grid solar-assisted heat pump (SHP) system, applicable Europe-wide but centred on the Mediterranean region.

More info

Dissemination

- Publications:
 - Puertas A M et al. Finite element simulations of encapsulated phase change materials with density change upon melting.
 International Conference on Solar Energy for Buildings and Industry. Palma de Mallorca, I I-14 October 2016.
 - Puertas A M. et al. Simulation of melting of encapsulated CaCl2*6H2O for thermal energy storage technologies. Energies 2017, 10: I-19. Open access
- Dissemination plan

Encountered problems

- Sensor installation delayed from M5 to M6 due to CNR-IRSA closure in August 2016
- Slow WiFi connection at CNR-IRSA site precluded correct data acquisition until June of 2017.
- Overexposure of SBBGR to sunlight compared to a fullscale unit placed on the ground
- Insufficient data collected during the 2017 summer period

Project extension requested to JPI

New end date:

30/09/2018

Thank you for your attention!

We Welcome your input

