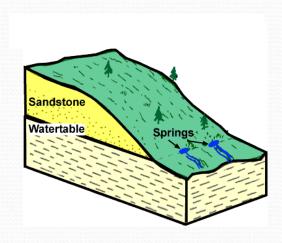
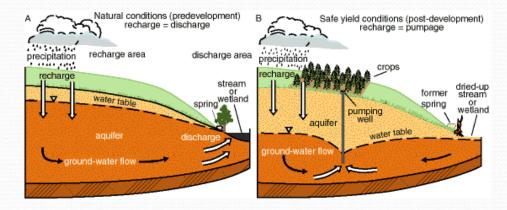


Water Needs, Availability, Quality and Sustainability WE-NEED

Monica Riva
Brian Berkowitz
Susana Loureiro
Daniel Fernandez-Garcia

CONSORTIUM DESCRIPTION


ACRONYM	TOPIC	Coordination	Partners
WE-NEED	2		**
Water Needs, Availability, Quality and Sustainability		water management; risk assessment; emerging contaminants; surface and groundwater interaction; multiscale characterization; ecotoxicity	


PRINCIPAL INVESTIGATOR	INSTITUTION		COUNTRY
Monica Riva	Politecnico di Milano	- Polimi	Italy
Brian Berkowitz	Weizmann Institute of Science	- Weizmann	Israel
Susana Loureiro	Universidade de Aveiro	- UAVR	Portugal
Daniel Fernandez-Garcia	Universitat Politecnica de Catalunya	- UPC	Spain

Scope and State of the art

GOAL: Develop innovative management strategies to assist the use/protection of groundwater resources (springs – wells)

http://imnh.isu.edu/digitalatlas/hydr/concepts/gwater/gwrfr.htm

http://www.kgs.ku.edu/Publications/pic9/pic9_2.html

Scope and State of the art

GOAL: Develop innovative management strategies to assist the use/protection of groundwater resources (springs – wells)

Problems/Failure of classical approaches/Challenges of WE-NEED:

- Heterogeneity of natural systems. <u>Strategy</u>: proper quantification
- Complex dynamics of processes involved. <u>Strategy</u>: process quantification for modeling and decision-making
- Scaling/Statistical Scaling: Transfer knowledge across scales. How
 to use available information from a range of observational scales to
 characterize/describe the subsurface at a desired scale (in space and
 time)? Strategy: increase certainty of predictions

Scope and State of the art

GOAL: Develop innovative management strategies to assist the use/protection of groundwater resources (springs – wells)

WATER QUANTITY: Over-exploitation of groundwater resources

WATER QUALITY: Regulated and emerging contaminants

(pharmaceuticals, ...)

KEYWORDS: Management/Protection of Groundwater Resources – Sustainability – Uncertanty Quantification - Risk Assessment - Multiscale Statistical Analysis Relevant Study Cases (real scenarios)

Objectives and relation to the scope of the call

Scientific/Application-oriented objectives are:

- Develop methods/models to include uncertainty quantification and its propagation across scales (as grounded on direct observations/experiments at diverse scales of interest) in risk assessment (under uncertainty).
- Provide quantitative understanding and process-based models of the hydrogeological system and geochemical behavior of reactive chemical species in relevant scenarios.
- Include these results within a **decision making** framework for the **sustainable use of water**, preserving historical heritage, and with acceptable risk to existing ecosystems.
- Assessment of the contaminant-specific vulnerability of the aquifer systems.
- Physically-based **risk assessment** and water management protocols.

Objectives and relation to the scope of the call

Scientific/Application-oriented objectives are:

- Develop methods/models to include uncertainty quantification and its propagation across scales (as grounded on direct observations/experiments at diverse scales of interest) in risk assessment under uncertainty.
- Provide quantitative understanding and **process-based models** of the hydrogeological system and geochemical behavior of reactive chemical species **in relevant scenarios**.
- Include these results within a decision making framework for the sustainable use of water, preserving historical heritage, and with acceptable risk to existing ecosystems.
- Assess the contaminant-specific vulnerability of the aquifer systems.
- Provide physically-based risk assessment and water management protocols.

Objectives and relation to the scope of the call

Topic 2 of the WaterWorks 2014 Cofunded Call: "Research and innovation for developing technological solutions and services **for Water Resources Management**". Within this topic *WE-NEED* deals with **(subtopics 2.3 and 2.4)**"uncertainty/risk assessment, relevant study cases and innovative decision making tools".

Objectives and relation to the scope of the call

Topic 2 of the WaterWorks 2014 Cofunded Call: "Research and innovation for developing technological solutions and services **for Water Resources Management**". Within this topic *WE-NEED* deals with **(subtopics 2.3 and 2.4)**"uncertainty/risk assessment, relevant study cases and innovative decision making tools".

Two field sites representing different but complementary realities.

Springs location in the Cremona-Bergamo area

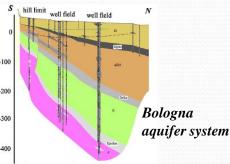
Springs

Springs

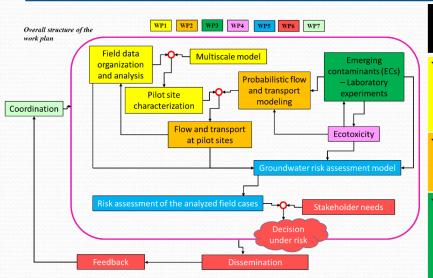
Springs

Springs

Springs


O Bologna

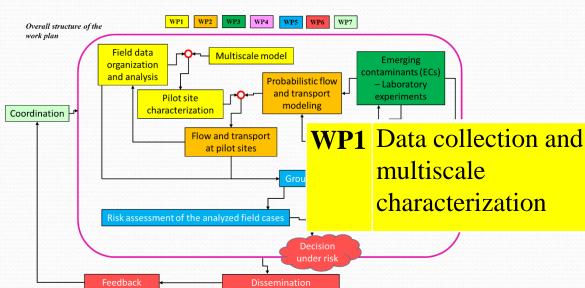
The *Cremona*Aquifer located in the so-called *Springs*Belt.


Natural high-quality water springs are the main supply to agriculture and a key environmental driver.

The *Bologna Aquifer* is a key source of water for the metropolitan area of Bologna.

Work Package (WP) description / distribution of tasks

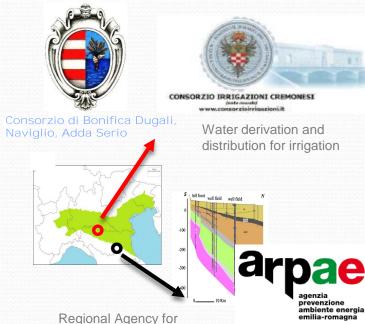
All partners	participate i	n several	WPs
--------------	---------------	-----------	-----


- Shared international experience, state-of-the-art process understanding and modeling techniques
- ➤ Mobility of researchers
- Multidisciplinary work

Start day: 20 April 2016

		Lead	Participating
		Partner	Partner
WP1	Data collection and	Polimi	UPC,
	multiscale		UAVR,
	characterization		Weizmann
WP2	Probabilistic flow and	UPC	Polimi,
	transport modeling		Weizmann
WP3	Fate of Emerging Eontaminats (Ecs) - laboratory experiments and modeling	Weizmann	UAVR
WP4	Ecotoxicology	UAVR	Weizmann
WP5	Multidisciplinary risk assessment and decision making	Polimi	UPC, UAVR, Weizmann
WP6	Dissemination of results, communication with stakeholders/general public	Polimi	UPC, UAVR, Weizmann
WP7	Project management	Polimi	UPC, UAVR, Weizmann

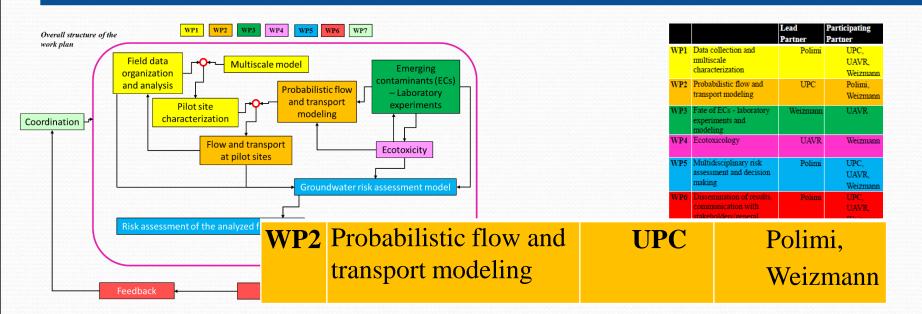
Work Package (WP) description / distribution of tasks



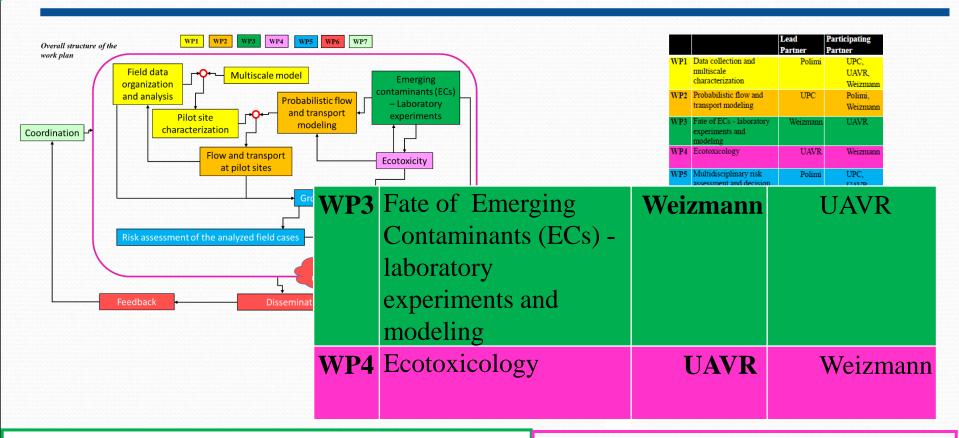
		Lead Partner	Participating Partner
WP1	Data collection and multiscale characterization	Polimi	UPC, UAVR, Weizmann
WP2	Probabilistic flow and transport modeling	UPC	Polimi, Weizmann
WP3	Fate of ECs - laboratory experiments and modeling	Weizmann	UAVR

Polimi

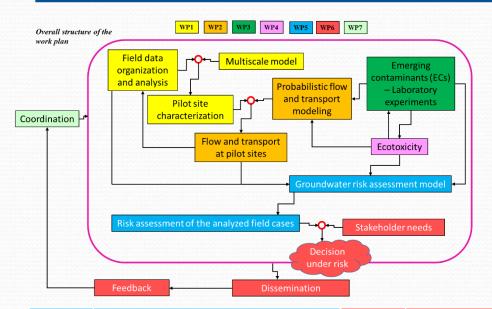
UPC,
UAVR,
Weizmann


- Develop a new model for scaling of statistics.
- Develop conceptual models of pilot sites.
- Reconstruction of spatial distributions of hydrogeological parameters.

Environmental Protection


Work Package (WP) description / distribution of tasks

- Develop methods for complex reactive transport problems.
- Reconstruct groundwater circulation within the field cases.
- Assess probabilistic time-related protection zones.


Work Package (WP) description / distribution of tasks

- Examine the transport behavior of representative ECs (laboratory experiments).
- Examine ECs transformation in environmentally-relevant conditions.
- Model fate and transport of ECs.

- Assess toxicity of groundwater samples.
- Infer potential increases in toxicity (synergism) due to multiple chemical exposure.

Work Package (WP) description / distribution of tasks

		Lead Partner	Participating Partner
WP1	Data collection and multiscale characterization	Polimi	UPC, UAVR, Weizmann
WP2	Probabilistic flow and transport modeling	UPC	Polimi, Weizmann
WP3	Fate of ECs - laboratory experiments and modeling	Weizmann	UAVR
WP4	Ecotoxicology	UAVR	Weizmann
WP5	Multidisciplinary risk assessment and decision making	Polimi	UPC, UAVR, Weizmann
WP6	Dissemination of results, communication with stakeholders/general public	Polimi	UPC, UAVR, Weizmann
WP7	Project management	Polimi	

WP5 Multidisciplinary risk assessment and decision making

WP6 Dissemination of results, communication with stakeholders/general public

Polimi

UAVR, Weizmann

UPC.

- Develop a Groundwater Risk Management Model.
- Apply the Risk Model to the field sites.

Convey the scientific information in clear form to stakeholders, general public.

Management structure

Coordinator (M.Riva, Polimi) Deputy Coordinator (B. Berkowitz) National Funding Authority

Each of the Parties


Decision making in network activities

Supervisory Board (SB)

Network coordinator -Deputy Coordinator One scientists-in-charge of each partner Two External Advisors – Industrial sectors

Scientific activities

Applied-oriented activities

Dissemination activities

Innovative Aspects

Statistical Scaling. To describe aquifer functioning under the influence of uncertain parameters and processes defined at diverse scales.

Characterization of the **fate of ECs in aquifers**.

Quantification of the effect of multiple sources of uncertainty on sustainable management and protection of the groundwater resources.

Expected Impact

Increased levels of confidence by reducing uncertainties.

Impacts of groundwater extractions and contaminant dynamics.

Reduce future costs associated with over-exploitation/contamination of groundwater.

Innovative Aspects

Application of probabilistic groundwater models in real/relevant hydrogeological studies (Probabilistic Risk Assessment)

Expected Impact

Provision of an understandable and ready-to-use platform for risk analysis and management under uncertainty

Thank you

WatEr NEEDs, Availability, Quality and Sustainability

