

PROGNOS

Predicting in-Lake Responses to Change using near real time models

Donald Pierson Eleanor Jennings Elvira de Eyto Erik Jeppesen Raoul-Marie Couture Gideon Gal

Water JPI WaterWorks2014 Cofunded Call 18 May 2016, Rome

CONSORTIUM DESCRIPTION

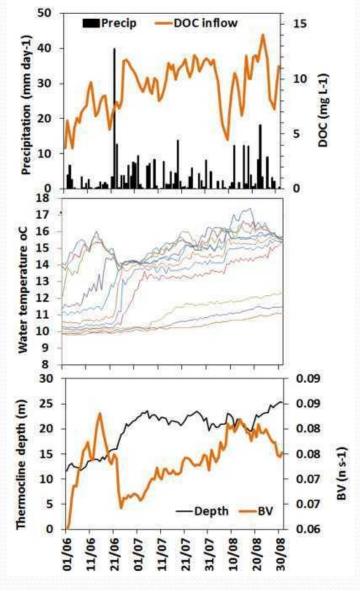
ACRONYM	ΤΟΡΙϹ	Coordination	Partners
PROGNOS	2		■ ■ ■ ■ ■ ■
Predicting In-Lake Responses to Change using near real time models		Water quality monitoring; Model based real- time forecasts; Sensor networks; Adaptive economically optimized water management;	

DOC; Cyanobacteria blooms; Climate change.

INVESTIGATOR	INSTITUTION	COUNTRY
Donald Pierson	Uppsala University	Sweden
Eleanor Jennings	Dundalk Insitute of Technology	Ireland
Elvira de Eyto	Marine Insitute	Ireland
Erik Jeppesen and Dennis Trolle	Aarhus University	Denmark
Karsten Bolding and Jorn Bruggeman	Bolding & Bruggeman ApS	Denmark
Raoul-Marie Couture and Isabel Seifert-Dähnn	Norwegian Institute for Water Research – NIVA	Norway
Gideon Gal	Israel Oceanographic and Limnological Research	Israel

PI

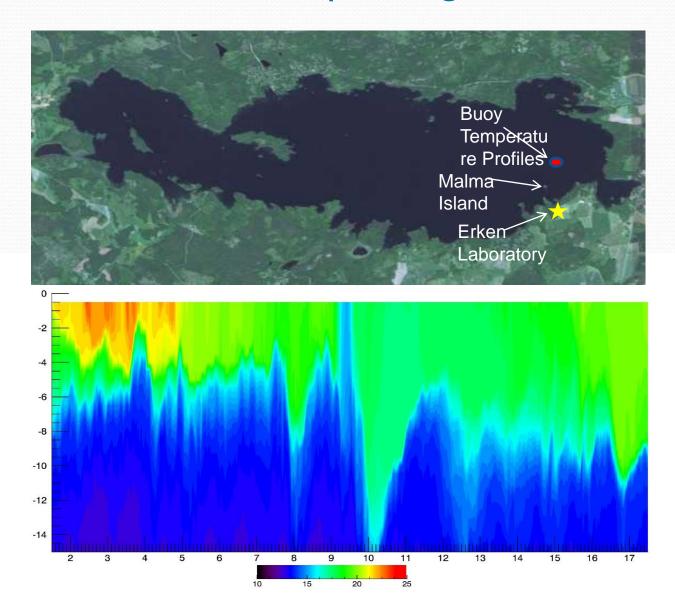
Objectives


- Demonstrate the value of High Frequecy (HF) water quality monitoring to provide information to support water managment decisions
 - Information on the present state of the lake
- Couple HF monitoring data to water quality models in order to provide short-term water quality forecasts.
 - Information on the future state of the lake
 - Enhanced information to support water management decisions
 - Inceased value of HF water quality monitoring data
- Issues Considered
 - Algal Blooms
 - DOC concentrations

Why High Frequency Monitoring?

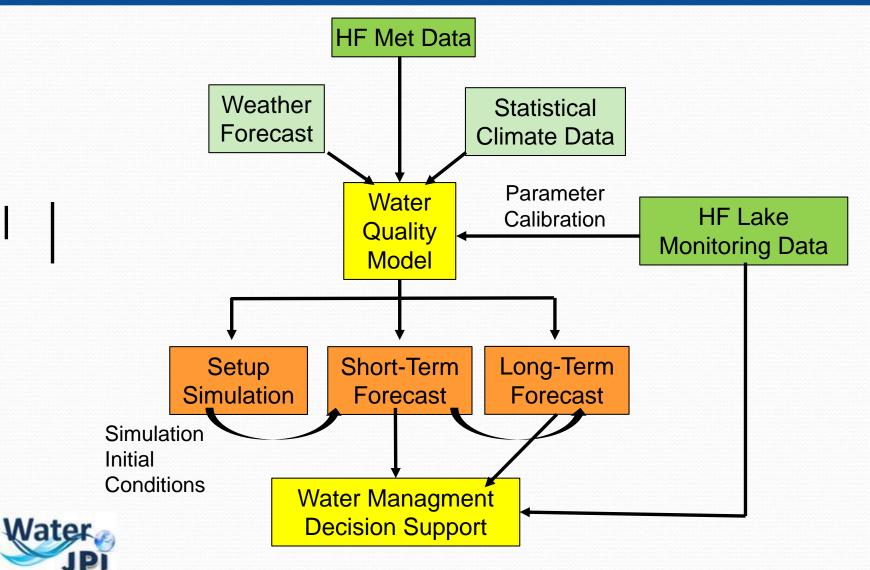
- Water quality is shaped by episodic events that are not easily captured by routine monitoiring programs
- These events occur along a continum of frequency and intensity
 - Extreme events large storms river flows etc
 - Less extreme but still important for affecting lake processes
 - Wind Events
 - Heating and cooling events
 - Threshold Events Stratification and Ice cover
- Episodic events expected to Increase as a consequence of climate change

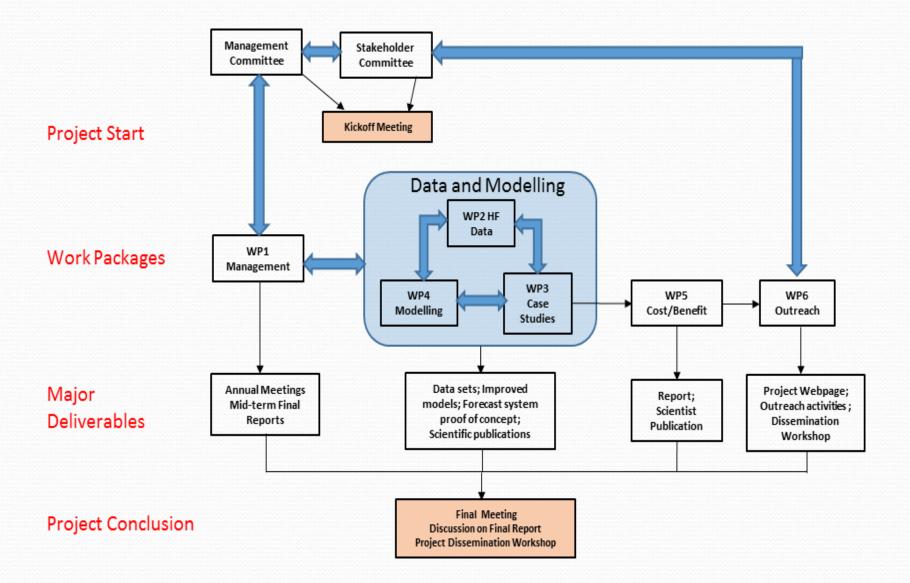
Effect of Large Rain Event on Lake Feeagh Ireland



- High rainfall 21 June
- Pulse of DOC to lake
- Deepening in stratification
- Decrease in stability that persisted for rest of summer

Jennings et al. Freshwater Biology 57, 589-60157, 589-601, 2012


Effect of Wind Driven Upwelling Lake Erken Sweden


Why Modelling?

- High frequency monitoring on its own is great for showing what is happening now, but has more limited use for predicting future changes
 - OK when management reactions can be fast
 - Useful in systems with directional water flow what will happen downstream
- Modeling can potentially predict future conditions if model drivers can be obtained that are representative of future conditions.
 - Forecasted conditions also modeled conditions
 - Statistical distributions climatology
- Model simulations can be improved if models are updated with high frequency monitoring data
 - Initial Conditions
 - Parameter values
- The value of high frequency monitoring can be increased if it is combined with modeling.

Coupling of Monitoring and Modelling


Project Structure

Innovation

- A system to provide forecasts for adaptive water management
- Developing methods of data assimilation into models
- Reducing model time steps to match high frequency data streams
- Developing methods to routinely process data run simulations and produce forecasts
- Developing realistic simulations of phytoplankton blooms
- Developing simulations of DOC, with emphasis on drinking water quality
- Cost benefit analysis working with information from major water supplies

Envisioned Forecast System

Potential Benefits

- Provide information to optimize water withdrawal and use
 - Reduce treatment cost and chemical usage
 - Improved use of HF monitoring data
- Development and Strengthening of European SMEs
 - For HF monitoring systems
 - Modeling based decision support systems
- Improved knowledge on how climate regulates water quality

PRESENTATION INSTRUCTIONS

Please address the following topics:

- state-of-art and the originality and innovative aspects of the project
- objectives of the project and the relation to the scope of the call
- Work package description/ distribution of tasks/ consortium description (management structure)
- Expected impacts (research-related/ innovation-related/ societal-related)
- Address how your project is related to the Call and to the European Research Area objectives (multidisciplinary work; mobility of researchers; knowledge sharing throughout the project lifetime and beyond; effective articulation between Basic Research/Applied Research/Innovation)

IS MINUTE PRESENTATION. Direct it towards a HEALTHY DISCUSSION OF IDEAS and potential NETWORKING with the other projects

