

PIONEER_STP

The Potential of Innovative Technologies to Improve Sustainability of Sewage Treatment Plants

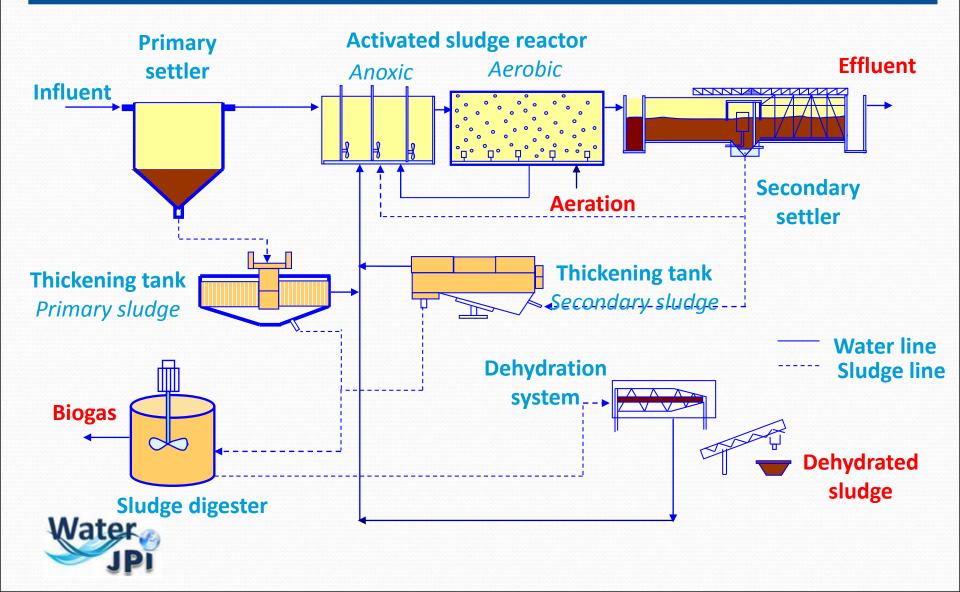
Juan M. Lema, <u>Sonia Suárez</u> Francesco Fatone Gürkan Sin Elzbieta Plaza Jose R.Vazquez-Padin

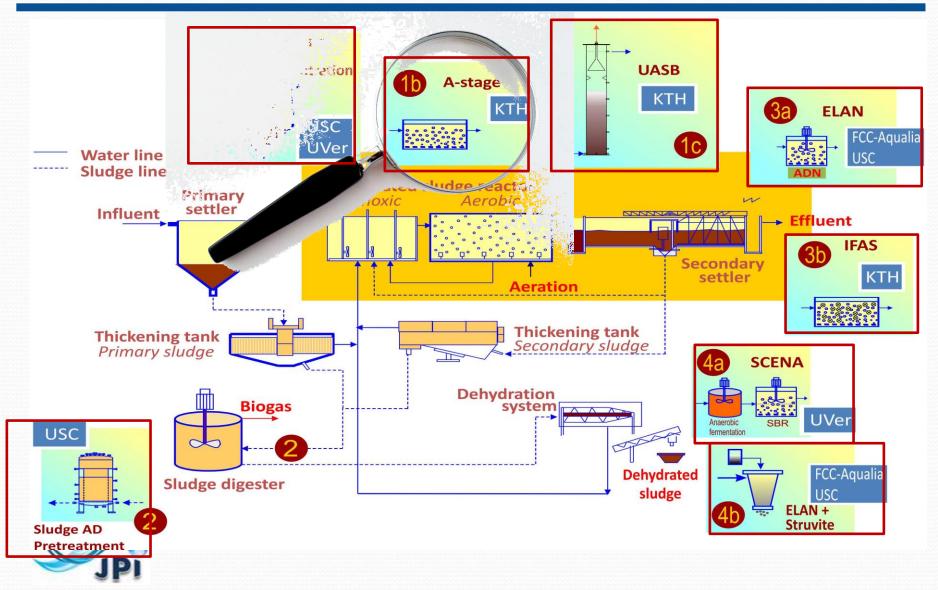
Water JPI WaterWorks2014 Cofunded Call 18 May 2016, Rome

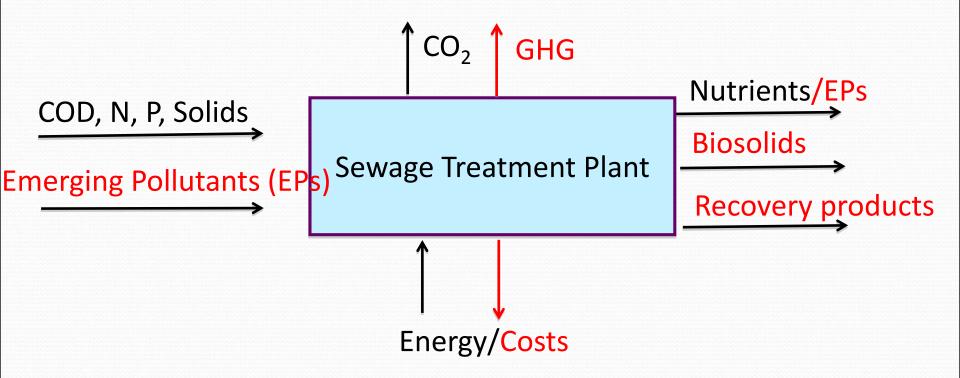
CONSORTIUM DESCRIPTION

ACRONYM	ΤΟΡΙϹ	Coordination	Partners
Pioneer STP	I.		
The Potential of Innovative Technologies to Improve Sustainability of Sewage Treatment Plants		innovative technologies; integration; wastwater treatment; greenhouse gases; energy; nutrients; optimization; plant-wide modelling	

PRINCIPAL INVESTIGATOR	INSTITUTION	COUNTRY	
Juan M. Lema	University of Santiago de Compostela	Spain	
Francesco Fatone	University of Verona	Italy	
Gürkan Sin	Technical University of Denmark	Denmark	
Elzbieta Plaza	Royal Institute of Technology	Sweden	
Jose R.Vazquez-Padin	FCC Aqualia	spain	


State-of-the-art


- Sewage treatment plants (STP) are still mainly based on the <u>Activated Sludge (AS)</u> process, discovered 100 years ago.
- Unable to cope with the current <u>societal challenges and legal</u> requirements in wastewater treatment (WWT).
- The birth of a growing number of technological initiatives targeted <u>WWT innovation</u>.
- <u>New targets</u> as the recovery of resources, the production of effluents suitable for reuse (e.g. minimising the concentration of emerging pollutants (EPs)) and the reduction in energy consumption, sludge surplus and environmental impacts.
- How to consider all of them from a holistic point of view?

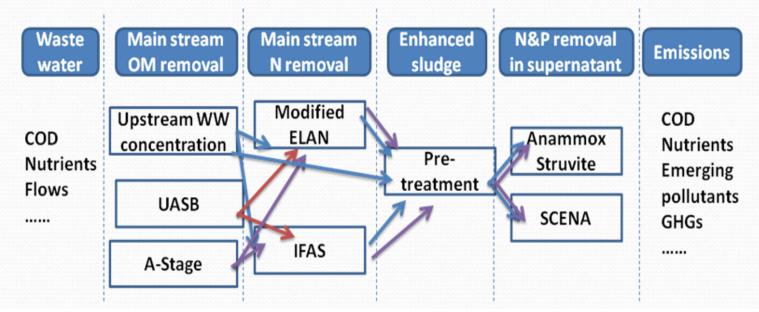


- Development of innovative technologies for the treatment of wastewater, sludge and centrate.
- Characterization under a <u>multicriteria perspective</u> (design and operation, effluent quality, emissions, removal efficiency, costs, energy, etc.).
- Evaluation of the impact of <u>integrating</u> these technologies within the global plant layout.
- <u>Optimization</u> of the STP taking into account the strong interdependencies between the different streams.
- Holistic assessment (environmental, economic, energetic, risk).

Objectives

The *Main Objective* is to assess the impact of innovative units (nowadays at lab- or pilot-scale or in their early stages of industrial implementation) on the global plant efficiency and sustainability, taking into account <u>nutrients, energy, Emerging Pollutants (EPs)</u>, greenhouse gases (GHGs) and cost/benefit balances.

Sub-Objectives

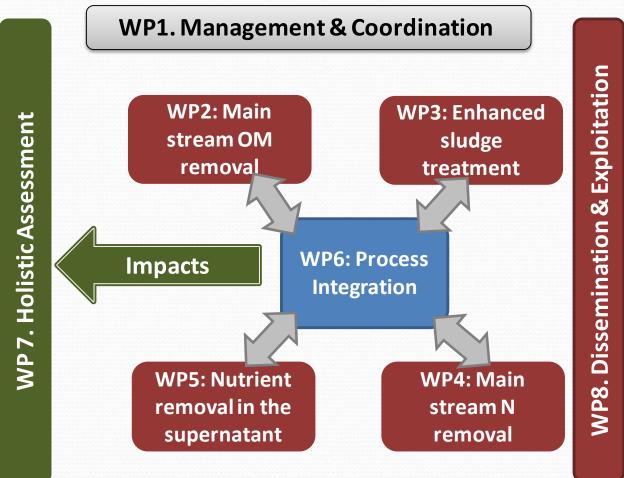

- Develop 4 Unit Technological Solutions (UTS), two of them focused on <u>energy recovery</u> from valuable organic matter (UTS1&2) and two on <u>nutrients removal/recovery</u> (UTS3&4).
- 2. Combine the UTS into <u>different plant layouts</u> (using a superstructure-based optimization framework)
- 3. Assess the STP in terms of technical, environmental, energetic and economical aspects
- 4. Optimize the STP by modelling and simulation

Unit Technological Solutions

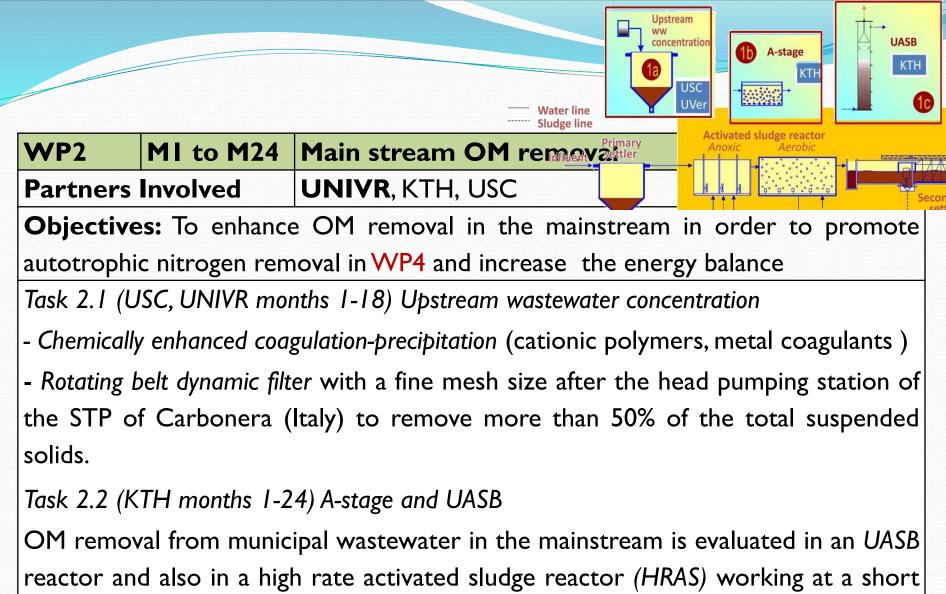
Position in plant layout	Technology	Main Target	
Pre-Concentration Step	 Upstream wastewater concentration High rate activated sludge (HRAS) Anaerobic Treatment 	 Improve Energy balance ↓ organic load in the water line by ↑ sludge production Energy recovery in the water line 	
Sludge Line	Thermal pre-treatment	↑ Energy production during sludge Anaerobic Digestion	
Mainstream Water Line	 Modified ELAN process IFAS anammox 	 N removal ↓ Oxygen demand 	
Centrate from the AD	 Via nitrite N removal and P hyper-accumulation (SCENA) ELAN followed by struvite precipitation 	- N removal - P recovery	

Process integration

Superstructure based optimization framework

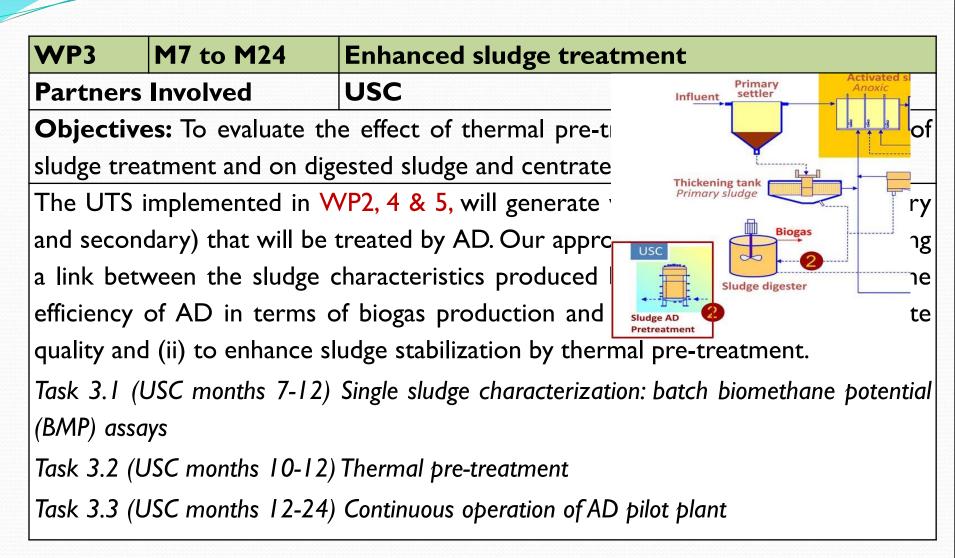


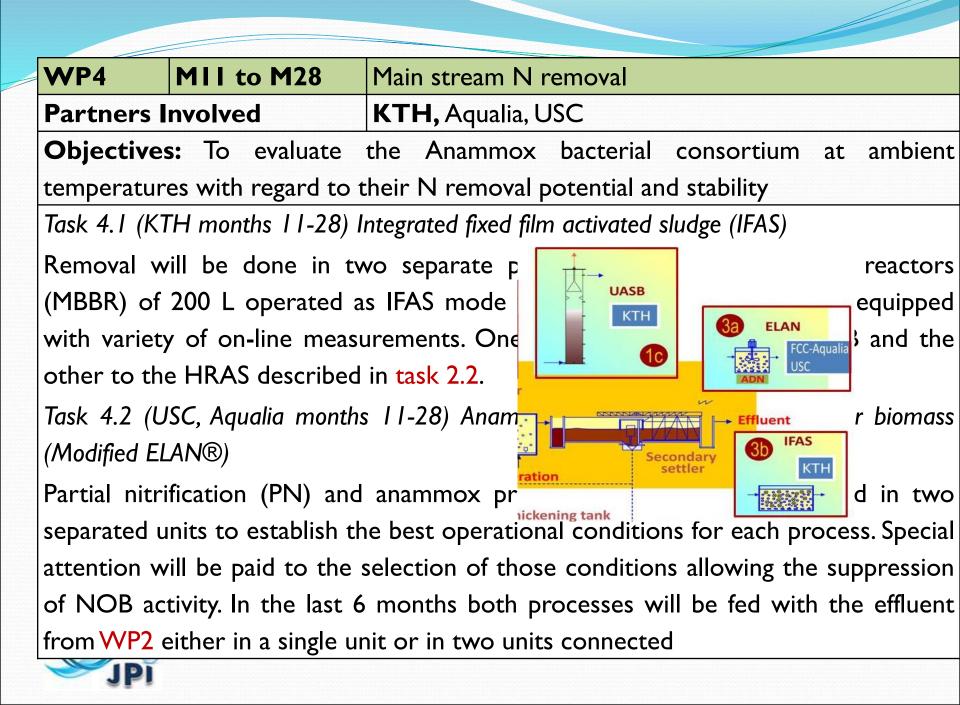
a) A database containing information on performance and economics of treatment units and optimization problem solved for different objective function formulations (economics, environmental, etc.)


b) The process design solution will be further optimized by using a dynamic plant wide modelling platform (PWM).

c) This will provide the data for assessing Risks and Environmental and Energetic impacts (LCA, RA, LCC)

Work Plan




SRT. The latter will increase the amount of OM available for biogas production in

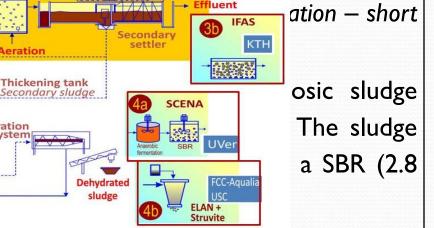
the sludge line while the first will produce the biogas directly in the mainstream.

WP5 MI to MI8

Nutrient removal in the supernatant

Partners Involved Aqualia, UNIVR

Objectives: To evaluate the efficiency of nutrient removal in the centrate of


AD by two different strategies

Description of Work

Task 5.1. (UNIVR months 1-18) Optir

cut SBR operation

The alkaline fermentation reactors separated in task 2.1 in order to fermentation liquid and the sludge m³) in order to remove N and P.

Task 5.2 (Aqualia, USC months 1-18) הויטווויויטע י אנועאונב ארכטאוני

A pilot scale ELAN® process will be operated treating the supernatant of the sludge anaerobic digester. EPs will be followed in the solid and liquid phases. Data from the full scale ELAN® plant will be also used for the evaluation.

Dehydration

WP6 MI to MM30	Process Integration				
Partners Involved	DTU, USC				
Objectives: To develop a superstructure based optimization tool for generating					
new plant layouts, optimize	ed and characterized by means of a plant-wide				
quantification tool, includir	quantification tool, including mechanistic models for EPs and GHGs				
Task 6.1 (USC, DTU months	I-28) Data collection and analysis				
Data from the previous L	ITS (WP2, 3, 4 & 5) including COD, N, P, GHGs and EP,				
energy consumption/production, use of reactants, etc.					
Task 6.2 (DTU months 1-24) superstructure based optimization					
(i) the definition of the o	lesign space, the description of each alternative in the				
superstructure using st	eady-state process stoichiometry model, (ii) the				
optimization for different of	objective function formulations				
Task 6.3 (DTU months 1-30) Mechanistic modelling and plant wide simulation tool				
The ASM will be used and	extended for EP removal and N_2O and CO_2 production				
The plant-wide model w	ill be developed based on the Benchmark Simulation				
Model 2 and used to verify	and further optimize the process concepts				
JPÏ					

WP7 MI9 to M36

Holistic assessment

Partners Involved

Objectives: To confirm the feasibility of the different UTS to improve the sustainability of STPs.

USC, DTU

Task 7.1 (USC months 18-30) Life Cycle Assessment (LCA)

Inventory tables will be prepared using the database obtained in WP6. To determine the overall environmental impacts as a result of the flows through the system, LCA integrates the environmental impact within relevant impact categories.

Task 7.2 (USC months 18-24) Environmental Risk Assessment (RA)

Inventory of effluent and sludge concentrations of the three EPs considered (diclofenac, 17-a ethinylestradiol, 17-b estradiol) analysed within WP2, 3, 4 &5 will be employed to perform the RA under both stream discharge and reuse scenarios. *Task 7.3 (DTU, USC months 25-32) Economic impacts(LCC)*

The economic profiles from a Life Cycle perspective will be determined, including the representative life cycle stages.

Task 7.4 (DTU, USC months 30-36) Holistic evaluation: integration multicriteria indicators A systematic approach for assessment of importance of weights on decision making function will be performed using sensitivity analysis as well as pare to front analysis.

Mobility plan

To From	USC	DTU	Aqualia	UNIVR	КТН
USC		Modelling sludge pre- treatment + AD (WP3→6)	Main stream Anammox up- scale (WP4; intersectoral)	Data gathering for assessment (WP7→WP5)	
DTU	Holistic assessment (WP6→7)				Modelling mainstream Anammox (WP6→4)
AQUALIA		Modelling Anammox side stream (WP2→6)			
UNIVR		, , , , , , , , , , , , , , , , , , ,	SCENA vs. ELAN (WP5; intersectoral)		
ктн	IFAS after upstream conc. (WP4→WP2)				

Expected Impact

Scientific and Technological

- Development of <u>new technologies</u> for water, sludge and centrate treatment
- <u>Integrate</u> nutrients, energy, GHGs, EPs and cost/benefit balances within the entire STP

Economic

- STPs conceived as <u>green factory</u> for reducing pollution and recovering resources
- Incorporating the process <u>economics</u> into the optimization function

Expected Impact

Economic

- Decision support tool allowing to select the best plant layout in terms of <u>sustainability</u> fosters innovation and competitiveness of European water sector
- Strong collaboration <u>University-Industry</u>

Societal

Generation of high quality and <u>safe waters</u> (conventional pollutants, emerging pollutants)

it wouldn't b

- Protecting <u>quality air</u> (reducing GHG emission)
- <u>Training</u> of water professionals able to tackle the interdisciplinary approach needed for designing/upgrading the STP of the future

Expected Impact

Policy

- The EPs considered in this proposal are currently included in the <u>watch list of priority substances</u> of the WFD (diclofenac, 17-a ethinylestradiol, 17-b estradiol)
- Cutting <u>GHG emissions</u> under the Kyoto Protocol (WWT generates CO₂, CH₄ and N₂O)

Water JPI and European Research Area objectives

- <u>JPI Water</u> SRIA includes EP emissions with regards to developing safe water systems for citizens (pilot call 2013)
- Pioneer_STP combines <u>basic and applied approaches</u> (e.g.TRL 4-5 for low T Anammox; TRL 7 for SCENA and 8 for ELAN applied to centrate)
- <u>Mobility plan</u> to enhance cooperation and to maximize interdisciplinary and inter-sectoral collaborations is drafted.

PIONEER_STP

The Potential of Innovative Technologies to Improve Sustainability of Sewage Treatment Plants

Juan M. Lema, <u>Sonia Suárez</u> Francesco Fatone Gürkan Sin Elzbieta Plaza Jose R.Vazquez-Padin

Water JPI WaterWorks2014 Cofunded Call 18 May 2016, Rome