

MUFFIN

Multi-Scale Urban Flood Forecasting: from local tailored systems to a pan-European service

Jonas Olsson Soren Thorndahl Herman Russchenberg Teemu Kokkonen

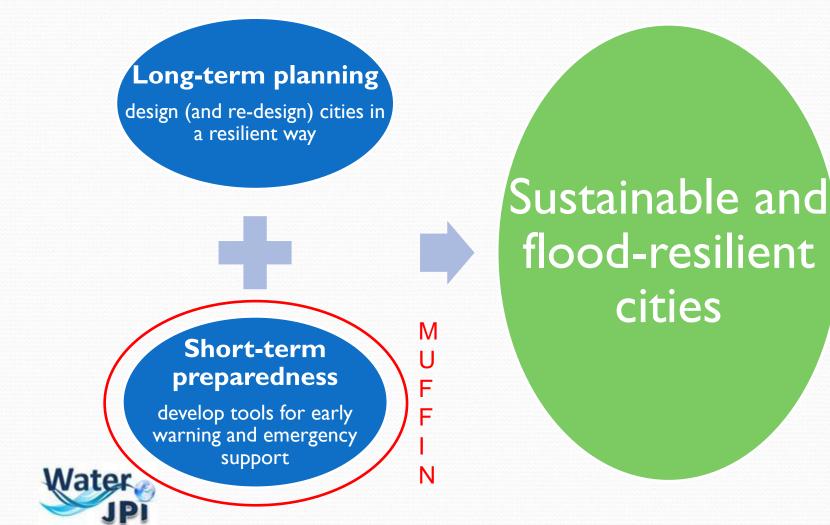
Water JPI WaterWorks2014 Cofunded Call 18 May 2016, Rome

CONSORTIUM DESCRIPTION

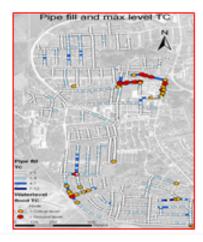
ACRONYM	ΤΟΡΙϹ	Coordination	Partners				
MUFFIN	2;3		= = +				
Multi-Scale Urban Flood Fore from local tailored systems t European service	•	urban flooding; multi-scale forecasting; intense rainfall; end-user value; European service					

PRINCIPAL INVESTIGATOR	INSTITUTION	COUNTRY	
Jonas Olsson	Swedish Meterological and Hydrological Institute	Sweden	
Søren Thorndahl	Aalborg University	Denmark	
Herman Russchenberg	Delft University of Technology	The Netherlands	
Teemu Kokkonen	Aalto and Helsinki University	Finland	

The problem


- Urban flooding is a problem already today
- ↔ Urban population is rapidly growing worldwide (2 \rightarrow 4 billion in ~30 years; UN)
- This generally increases both main types of flood risk
 - Pluvial flooding (intense rainfall) because of densification of central parts
 - Fluvial flooding (river discharge) because of city expanding to flood-prone areas
- Further more intense rainfall is expected in a warmer climate
- The urban flooding hazard is expected to increase

Bilar bärgas från den översvärnmade inre ringvägen i Malmö på söndagen. Foto: Stig-Åke Jönsson/TT.


The solution

Flood models: state-of-the-art

Local hydraulic models

- Primarily designed for pluvial flooding in highly urbanized areas
- Describes coupled flows on surface and in sewers
- Temporal resolution down to seconds and spatial resolution down to metres
- Set-up and execution requires substantial resources for every area

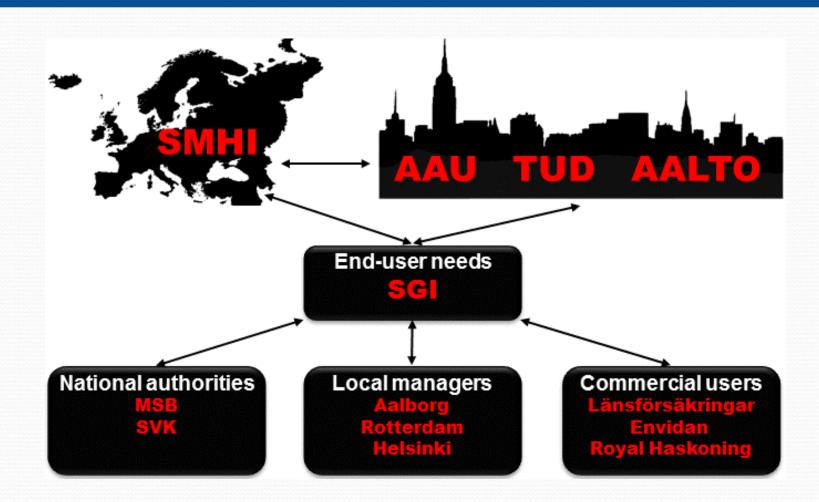
Multi-basin hydrologic models

- Primarily designed for fluvial (i.e. river) flooding in rural areas
- Describes infiltration and river discharge
- Temporal resolution generally 1 day and spatial resolution ~ 1 km
- Can be set up and executed over large regions with limited resources

MUFFIN: objectives and originality

The overall objectives of the project is to

- Explore today's performance limits of both types of modelling/forecasting approaches
- Assess the value of forecast resolution and accuracy for a selection of key end-users
- Bridge the gap between the urban and large-scale hydrological modelling communities, for providing mutual benefits and an arena for new thinking


MUFFIN: relation to call

The proposal specifically addresses the third topic of the call, i.e. Research and Innovation for Developing Technological Solutions and Services to Mitigate Impacts of Extreme Events (Floods and Droughts) at Catchment Scale, including all three sub-topics:

- Innovative tools for protection: The project includes application and development of new sensors, monitoring systems and methodologies to observe and predict extreme rainfall
- Mitigating harmful impacts: The flood models will support analysis and evaluation of Sustainable Urban Drainage Systems (SUDS) such as green roofs, swales and infiltration systems
- Risk management solutions: The ultimate aim is improved tools, products and procedures for early warning of urban flooding using different systems in different environments and at different scales

MUFFIN: consortium connections

WPI MANAGEMENT

Task I.I Management and coordination

Task I.2 Advisory Board

WP2 END-USER VALUE

Task 2.1 Inventory and requirement specification

Task 2.2 GIS analysis and application

Task 2.3 Meeting, reporting and post-project planning

WP3 HYDRO-METEOROLOGICAL DATA

Task 3.1 Precipitation observations

Task 3.2 Observations of other variables

Task 3.3 Meteorological forecasts and nowcasts

Task 3.4 Data quality, synchronization and exchange

WP4 URBAN FLOOD FORECASTING

Task 4.1 Urban catchment characterization

Task 4.2 Local model development

Task 4.3 Multi-basin model development

Task 4.4 Multi-scale experiments

Task 4.5 Analysis and synthesis

Task 4.6 Interpretation and presentation

WP5 EXPLOITATION AND DISSEMINATION

Task 5.1 Exploitation

Task 5.2 Dissemination

MUFFIN: the overall picture

Table 3: List of milestones and deliverables.

Milestones (month/s):	Deliverables (month/s):					
M1.1 AB meetings (3,18,34)	D1.1 Final report, including post-project plan (36)					
M2.1 End-user workshops/meetings (3,18,34)	D2.1 End-user Requirement Specification (4)					
M2.2 End-user survey completed	D2.2 GIS application (36)					
M3.1 Forecasting/nowcasting methodology (12)	D2.3 End-user Report (part of final report) (36)					
M4.1 Land-use data retrieved and flood models developed (10)	D3.1 Observational data for flood model development and calibration (12)					
M4.2 Flood models set-up, events selected (18)	D3.2 Meteorological hindcasts for flood model simulations (18)					
M4.3 Historical hindcasts performed (22)	D3.3 Report on hydro-meteorological forcing in the project (21)					
M4.4 Real-time demonstration runs completed (28)	D3.4 Final observational data bases (36)					
M4.5 Analysis and interpretation done (30)	D4.1 Report of flood model development in the project (16)					
M5.1 Web-site constructed, updates + newsletter (3 + 9, 21, 33)	D4.2 Report of the results from the multi-scale experiments (30)					
	D4.3 Material for end-user feedback (33)					
	D5.1 Pre-operational systems (36)					

Table 4: Gantt chart giving the overview of project activities.

			2016			2017				2018				2019
WP	Task	Activity	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1
1	1.1	Management and coordination											D1.1	
	1.2	Advisory board meetings	M1.1					M1.1						M1.1
2	2.1	Inventory and requirements				M2.2								
	2.2	GIS application												D2.2
	2.3	Meeting, reporting, planning	M2.1	D2.1				M2.1					D2.3	M2.1
3	3.1	Precipitation observations				D3.1								D3.4
	3.2	Other observations				D3.1								D3.4
	3.3	Forecasts and nowcasts				M3.1		D3.2						
	3.4	Data management, exchange							D3.3					
4	4.1	Catchment characterization						M4.2						
	4.2	Local model set-up				M4.1		M4.2						
	4.3	HYPE model set-up				M4.1		M4.2						
	4.4	Multi-scale experiments								M4.3		M4.4		
	4.5	Analysis and synthesis										M4.5		
	4.6	Interpretation, presentation						D4.1				D4.2	D4.3	
5	5.1	Exploitation												D5.1
	5.2	Dissemination	M5.1		M5.1				M5.1				M5.1	

MUFFIN: outcome and impacts

The main expected outputs

- Local and Pan-European urban flood forecasting systems with quantified performance/accuracy
- Data bases with high-resolution hydro-meteorological data from the case cities
- Scientific publications and scientific conference contributions
- End-user outreach: open workshops and tailored reports, as well as GIS visualization tool for end-users
- Short-term exchange of researchers and students between the consortium partners will be aimed at through coupled projects and activities

