

Innovations for Extreme Climatic Events

Tone Merete Muthanna Maria Viklander Guri Ganerød Floris Cornelis Boogaard Radu Constantin Gogu

Water JPI WaterWorks2014 Cofunded Call 18 May 2016, Rome

CONSORTIUM

PRINCIPAL INVESTIGATOR	INSTITUTION	COUNTRY
Tone Merete Muthanna	Norwegian University of Science and Technology	Norway
Maria Viklander	Lulea Univerisity of Technology	Sweden
Guri Ganerød	Geological Survey of Norway	Norway
Floris Cornelis Boogaard	Hanze University of Applied Science in Groningen	Netherland
Radu Constantin Gogu	Technical University of Civil Engineering Bucharest	Romania

INXCES Organisation

FOCUS AREAS

Floods

Droughts

Water Pollution

Ground Settlement

Flooding Risks

- Climate change exerts large influence on the catchment hydrology, and urban drainage
 - Expansion & increasing density of urban areas
 - In cold regions winter frost /ice formation
- Flood risk visualization tools for urban catchments
- Drainage design guidance for snowmelt plus rain event
- Better specification of frozen soils conditions in modeling

Resilience of Treatment BMPs

- Increased use of low cost stormwater treatment BMPs
 - Peak flow reduction and pollutant removal
- Disruption of stormwater treatment BMPs(Flood/Drought)
 - Physical damage/ adsorbent loss/ pollutant release
 - Higher loads / multiple contaminants
- Need to
 - Assess the resilience and life cycle impacts of water treatment BMPs
 - Develop multifunctional and robust treatment systems
 - Treatment train concept

Drought & Urban Subsurface

- Drought complex, invisible and slow phenomenon
 - Lower groundwater levels
 - Subsidence and ground instability
- Urban subsurface provides ecosystem services
 - Regulating (flood attenuation, remediation)
 - Carrier (infrastructure, buildings, heritage)
 - Provisioning (water, energy, raw materials)
- Safeguarding of subsurface ecosystem services lacking.
- Decision makers are not aware of benefits of subsurface and risks caused by drought
- Innovative monitoring tools for drought risks to subsurface eco-system services
 Water

General Objectives

- Develop new management tools for holistic integrated urban water management planning and risk assessment, including subsurface variability, ground- and storm water.
- Improve the understanding of the effects of climate change on soil-water interaction in urban and peri-urban areas
- Identify and enhance the benefits of urban ecosystem services for mitigation of extreme climatic events.

Project Implementation

innovation 100 jical

WP3

WP1 Integrated Risk Assessment

WP2 Sub & Surface Water Management

Tech Innovations for Risk Assessment & Mitigation

WP4 Dissemination/Outreach

WP5 Project Management

WPI-Integrated Risk Assessment

- Coupling the surface and subsurface in risk assessment and mitigation of extreme hydroclimatic effects.
- Simulations of the runoff for conditions of rainfall on snowpacks/snowmelt and frozen soils
- Applying the road map (TRUST) procedure to sustainability & selection of innovations

Leader: Prof. Maria Viklander

WP2-Surface – subsurface water

management for ecosystem services

- Formulation of technical and management criteria for selection of Low Impact Development(LID) locations.
- Development of strategies for improved selection of LIDs based on urban ecosystem services and groundwater infiltration potential
- Connecting ecosystem services values in the selection process for mitigation measures

WP3-Tech Innovations for Risk Assessment and Mitigation

- Disaster Risk Management Quick Scan (DRM Quick Scan)
- Spatial time-series analysis of Interferometric Aperture Radar (InSAR) observations in urban areas
- Testing of filter media/ treatment config. for robust performance of stormwater BMPs

Leader: Tone Muthanna Associate Prof.

WP4-Dessimination and Outreach

POPULAR SCIENCE

> TECHNICAL REPORTS

Leader: Dr.Floris Boogaard

Scientific and Societal Impacts

Originality and Value Aspects

- InSAR to identify areas susceptible to extreme events
- Catchment size 3D visualization of flood and drought risk
- Nature-based system coupled with in-situ advanced treatment for water recycling and reuse
- Differential design requirements for pipe capacity and volume detention in stormwater systems
- Developing a novel methodology for assessing runoff generation in urban catchments
- Integrating the technological innovations in risk assessment management

Expected Outcomes

- Improved environmental impact alleviation of climatic events
- A holistic approach to the urban water balance and improved management of urban water resources
- A new urban monitoring station and shallow subsurface monitoring in Bucharest and Better prediction of changes in groundwater level
- Incorporating rain-on-snow and snowmelt events in flood risk assessment
- Prototype of nature-based water quality filters and treatment train
- Guidelines for improved design of stormwater systems for extremes

THANKYOU!

