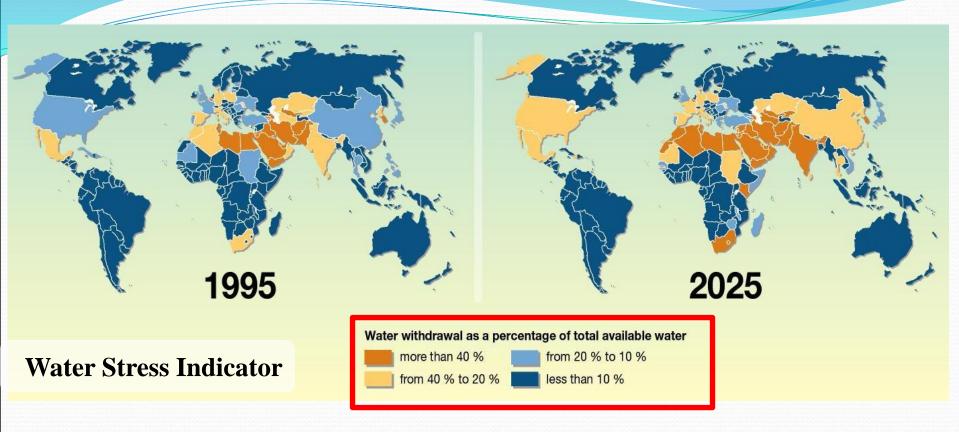


Low-Cost Water Desalination and Sensor Technology Compact Module

Salvatore Camposeo Emilio Nicolás Philippe Lebailly Anna Maria Stellacci Lucas Galera Quiles

Water JPI WaterWorks2014 Cofunded Call 18 May 2016, Rome


CONSORTIUM DESCRIPTION

ACRONYM	ΤΟΡΙϹ	Coordination	Partners						
DESERT	I;2								
Low-Cost Water Desalination a Technology Compact Mod		non-conventional water; desalination; smart agriculture; energy efficiency; wastewater treatment; recycling; soil fertility conservatior nutrient use efficiency and continuous monitoring							

PRINCIPAL INVESTIGATOR	INSTITUTION	COUNTRY
Salvatore Camposeo	Università degli Studi di Bari Aldo Moro	Italy
Emilio Nicolás	Agencia Estatal Consejo Superior	Spain
Philippe Lebailly	Université de Liège	Belgium
Anna Maria Stellacci	Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria	Italy
Lucas Galera Quiles	NOVEDADES AGRICOLAS S.A.	Spain

State-of-art

3 billion people in 2025 will live in a water scarce areas ...something like 60% of world population!!

Source: United Nations Environment Programme (UNEP) 2005

State-of-art

REUSE as a key strategy

Europe: it is estimated could reuse **3,222 Hm³/year** by 2025

Spain and Italy, where **80% withdrawn for agricultural**, could reuse 1,700 Hm³/year

Innovative aspects of the project

Water

Reuse of non conventional water

Energy

Alternative energy used for water treatments

Nutrients/Soil

new continuous monitoring system and soil quality preservation

Aim:

create an innovative concept of smarter agriculture

Specific Objectives

- 1. Developing:
- two solar powered equipments (HidroNIC- Desal and HidroNIC-Fert) for desalination and fertigation with NON CONVENTIONAL WATERS
- an innovative chemicals monitoring system (QUANTUM).
- 2. Monitoring and evaluating the **medium-term evolution of crop&soil status**.

3. Modelling the "value of irrigation water" by combining physical, biological and environmental factors to derive water-crop production functions (CWF).

Work packages

- WPI: Integration of two water compact modules
- WP2: Development of on-line intelligent fertigation equipment
- WP3: DESERT irrigation water validation and agronomic assessment for fruit tree crops and soil quality monitoring
- WP4: Sustainability assessment, energy and cost efficiency of the DESERT system
- WP5: Dissemination on strategy and exploitation plan for transfer of knowledge and market uptake

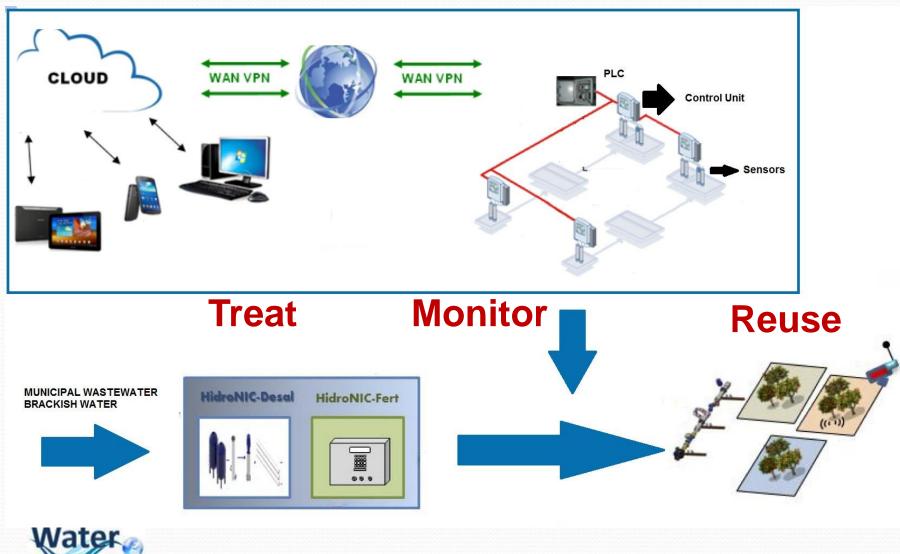
WP 1 Integration of two water compact Responsible NOVEDARES

Water

non conventional water (saline and/or municipal wastewaters)

"Hidro-Nic Fert"

integrated with the first one in order to add nutrients and then to fertigate


Development of on-line intelligent fertigation equipment

Responsible: University of Bari – DISAAT and INTESIS srl

"QUANTUM"

"QUANTUM"

It will be composed from:

Hardware

PLC (Programmable logic controller), panel control, rooter, **sensors for chemicals**

Software

Support tool to help **growers** to control and manage in real time irrigation and fertilization

Soil characteristics Texture Structure Soil depth, properties Crop Characteristics Species Phenological stages Production expected

Software

Toxicity Monitoring Monitoring of CI and Na Elaborate a previsional model

Water Monitoring

Chemical elements

DESERT irrigation water validation and agronomic assessment for fruit tree crops and soil monitoring

Responsible: CREA-SCA, CEBAS and UNIBA

EXPERIMENTAL FIELDS

DESERT TECHNOLOGY EVALUATION

evaluating the medium-term evolution crop nutritional status and ecophysiological response

Plant measurement

Yield Quality Indices

Monitoring of soil fertility evolution

This aim will be reached by means of innovative approaches

soil characterization laboratory&field

methodologies for *data analysis*

The project will address some critical issues trying to define innovative solutions

difficulty to highlight shortterm changes in soil fertility difficulty to interpret the results deriving from numerous indicators often showing conflicting outcomes confounding effect of spatial variability

Solutions proposed (1,2)

 identification of sensitive indicators able to highlight differences in management systems
definition of standardized protocols to quantify Soil Quality Indices (SQI)

and a second	1. Indicator selection	No.
20 7	Minimum Data Set (MDS)	265
	Physical Chemical Biological indicators indicators	
	Multivariate analysis methods (PCA, CDA, PLSR, PCR)	
See and	selected indicators	
Villian or Villian .	Ū.	
Superior C	2. Interpretation	
CHER ST		
Story and	to t	
OP	scores	
1		
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3. Integration	1.1.1.1.1.1
100 A 100	0	

 SQIs combine in a single value a variety of information regarding soil chemical, physical and biological properties.

Solutions proposed (3)

Proximal geophysical sensors will be used to characterize spatial variability and assess its change over the time

- optimizing soil sampling;
- <u>monitor the evolution of soil quality</u> during the experimental period;
- <u>improve data analysis</u>, using the auxiliary information as covariate data and implementing mixed effects models

WP4 **Sustainability** assessment, energy and cost efficiency of the DESERT system.

WP 4: Sustainability assessment, energy and cost efficiency of the DESERT system

a) Assess the **environmental sustainability** and energy efficiency of the Desert system

b) Assess the economic sustainability of the Desert system using the crop-production function

Methodologies

a) Cradle-to-farm gate Life Cycle Assessment of all the experimental fields

b) Crop-production functions

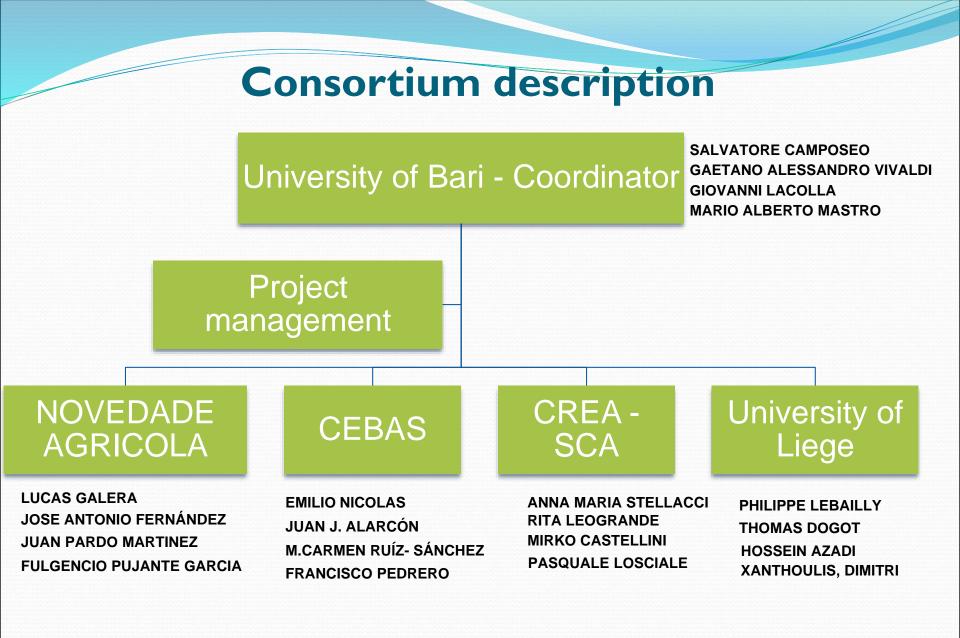
c) Water-crop functions

Dissemination strategy and exploitation plan for transfer of knowledge and market uptake

Responsible: University of Bari – DISAAT, CEBAS, CREA, ULG and NOVEDADE

Dissemination

- Congress
- Workshop
- Symposium
- Reports
- Scientific and technical pubblications
- Social media (Twitter, website...)


First DESERT meeting at Bari, middle of July University of Bari "Aldo Moro"

Distribution of tasks

		1st Year (May 2016-April 2017)												2nd Year (May 2017-April 2018)													3rd Year (May 2018-April 2019)									
Work	packages (WP)	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19 2	:0	21 2	2 2	3 2	24 2	5 2	6 27	28	29	30	31	32	33 3	34 3	5 36	
WP1	NOVEDADES. Integration of the water compact module technology																																			
Task 1	Developement of all components and processes useful to treat non conventional water: HidroNIC-Desal																																	Τ		
Task 2	Implementation of an innovative fertirrigation system HidroNIC-Fert and its integration with HidroNIC-Desal																																			
WP2	UNIBA. Development of on-line intelligent fertigation equipment (QUANTUM).																																			
Task 1	Implementation of a water remote control system "QUANTUM"																																			
Task 2	Developement, in web environment, of an applicative software																																			
WP3	CEBAS, CREA-SCA, UNIBA. DESERT irrigation water validation.		_			_	_					_									_															
Task 1.1	CEBAS. Evaluation of plant physiology parameters and crop nutrient status in open air fruit trees (citrus and olives trees) and horticultural crops under greenhouse conditions (tomato and pepper) under different irrigation water quality.																																			
Task 1.2	CEBAS. Irrigation water quality effects on the agronomic response of horticultural crops and fruit trees at the end of the crop cycle. Yield and fruit quality.																																			
Task 2.1	CREA-SCA. Comparison of different methodological approaches to compute soil quality indices (SQIs) and identification of sensitive indicators able to highlight short- term evolution of soil fertility																																			
	CREA-SCA. Characterization of the soil spatial variability of the experimental site; analysis of chemical, physical and hydrological properties of the soil samples collected under the treatments compared; data analysis and computation of synthetic SQIs																																			
Task 2.3	CREA-SCA. Analysis of the chemical composition of leaf samples collected under the treatments compared and data analysis																																			
Task 3.1	UNIBA. Evaluation of plant physiology and morphological parameters of a tree crop irrigated with non conventional water, treated with DESERT technology																																			
Task 3.2	UNIBA. Evaluation of fruit quality of a tree crop irrigated with non conventional water, treated with DESERT technology																																			
WP4	ULG. Sustainability assessment, energy and cost efficiency of the DESERT system.																																			
Task 1	Collection of primary data concerning the HidroNIC-Fert and HidroNIC-Desal systems, and data related to the experiments settings																																	Τ		
Task 2	Evaluation of the economic and environmental sustainability of the DESERT system by means of an inductive economic model technique implemented via statistical inferences derived by experimental data																																			
Task 3	Integration of the water-crop function with the environmental life cycle impacts produced by the application of the DESERT technology, including the environmental issues in the water bio-economic model																																			
WP5	UNIBA, CEBAS, CREA-SCA, ULG, NOVEDADES. Dissemination strategy and exploitation plan for transfer of knowledge and market uptake.																																			
Task 1	Dissemination strategy and exploitation plan for transfer of knowledge and market uptake.																																			

- developing low-energy, low chemical and highefficiency technologies for water treatment and desalination
- promoting the interoperability of real-time information tool (sensor networks) of water-soilplant system
- combining socio-economic and crop water function models

The **DESERT** technology will contribute to:

I. mitigate the negative effects of groundwater abstraction

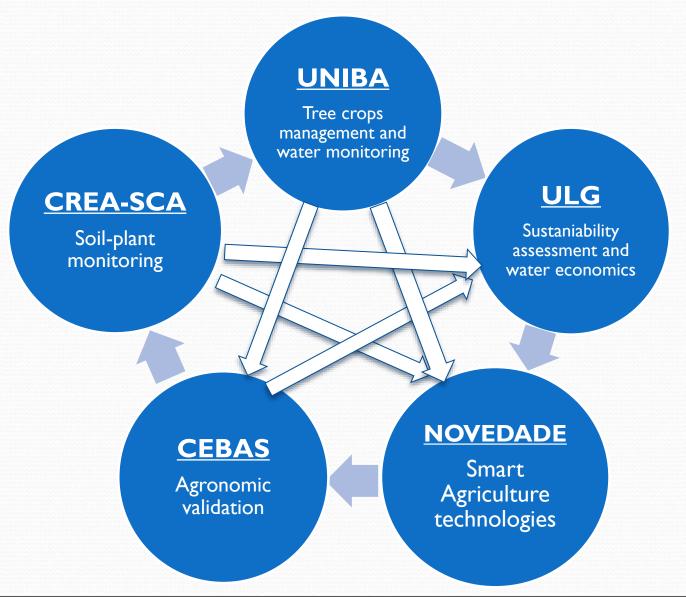
2. improve water quality for agriculture

3. increase farmers' income through

- saving costs of energy
- reducing the water and fertilizers needs

Relation to the Call and to the European Research Area objectives

DESERT project is aimed at **finding technical solutions** and **services** to:


Water Treatment, Reuse, Recycling and Desalination
Water Resources Management

These cross-cutting issues will enable partners, stakeholders and policy makers to face problems related to **non-conventional water use in agriculture** and develop feasible technical and managerial solutions

Relation to the Call and to the European Research Area objectives

The mutual cooperation among DESERT partners will allow sharing knowledge and expertise also through mobility of young esearchers ter

thank you for your attention

PRESENTATION INSTRUCTIONS

Please address the following topics:

- state-of-art and the originality and innovative aspects of the project
- objectives of the project and the relation to the scope of the call
- Work package description/ distribution of tasks/ consortium description (management structure)
- Expected impacts (research-related/ innovation-related/ societal-related)
- Address how your project is related to the Call and to the European Research Area objectives (multidisciplinary work; mobility of researchers; knowledge sharing throughout the project lifetime and beyond; effective articulation between Basic Research/Applied Research/Innovation)

IS MINUTE PRESENTATION. Direct it towards a HEALTHY DISCUSSION OF IDEAS and potential NETWORKING with the other projects

Nutrient Monitoring

- pH
- EC Electrical conductivity
- Oxygen dissolved
- TSS Total suspended solids
- Nitrates
- Ammonium
- Phosphorus
- Potassium
- Calcium
- Magnesium
- Boron

PORTAL HOME PAGE

