Multiple stressor impacts on European surface waters: A synthesis resulting from the MARS project

Water

Daniel Hering University of Duisburg-Essen

2017 Water JPI Exploratory Workshop, Dublin 2nd - 3rd November 2017

Project - background and timeline

- FP7 project:
 Managing Aquatic ecosystems and water Resources under multiple Stress
- February 2014 January 2018
- Funding: 9 Mio Euro
- 24 partners
- Currently about 170 paper produced by MARS

Morphology

Hydrology

Pollution

INERfloodp (km/km²) = Density of infrastructure (roads and railways) in the floodplains (km/km²)

Q10 fraction = Ratio between the number of days the water flow is below the 10%-ile with and without water abstractions (fraction)

Heaney dimensionless = Relative intensity of the potential pollution load from urban runoff (dimensionless), estimated by the Heaney model

I + I = 2 Additive effects of two stressors co-acting

I + I = 3 Synergistic effects of two stressors co-acting

I + I = I Antagonistic effects of two stressors co-acting

- How do stressors interact in affecting ecological status and services at the water body, catchment and continental scales?
- Despite the multitude of stressors, is there a common ground for restoration activities?

Project – methodology I: experiments

Photo: M. Oczipka (HTW Dresden)

Project – methodology II: catchment models

Project – methodology III: Europe-wide analysis and tools

Project - outputs I: example for additive effects (temperature and nutrients add to each other)

Phytoplankton

Macrophytes

Primary Production

Respiration

Project - outputs II: example for antagonistic effects (Cyanobacteria blooms under nutrient stress)

No addition of humic substances

High addition of humic substances

Project – outputs III: multiple stressor synthesis (relevance and strength of interactive effects)

*Akaike Information Criterion: Measure of the relative quality of the statistical model

Share and strength of paired-stressor interactions N=127 paired-stressor – impact relationships (data source: MARS unpubl.)

Project – outputs III: multiple stressor synthesis (relevance and strength of interactive effects)

Paired-stressor effects (Nutrients and other) on lake and river BQEs* N=123 paired-stressor – impact relationships (data source: MARS unpubl.) * incl. mesocosm experiments

Project - outputs IV: Future scenarios

Storyline I:'Techno world' or 'Economy rules'

- Fast economic development, increased use of energy
- Policies focus on enhancing trade and economic growth
- Rapid climate change
- SSP5 and climate scenario 8.5 (~ 2°C increase in 2060)

Storyline 2:'Consensus world'

- Economy and population grow at the same pace as now
- Environmental policies enforced by the government
- SSP2 and climate scenario 4.5 (~ 1.4°C increase in 2060)

Storyline 3:'Fragmented world'

- Unequal development of different countries
- No more international trade agreements
- Environmental protection done by rich countries at local scale
- SSP3 and climate scenario 8.5 (~ 2°C increase in 2060)

Project - outputs IV: Future scenarios Water quality (Total Phosphorus)

Relative change in Total Phosphorus concentrations

for the future scenarios across six case-studies

* excluding Thames at Eynsham

Project - outputs IV: Future scenarios Ecological Quality Ratios

- EQR invertebrates (ASPT) (Pinios, GR)
- -B-Ratio of high and good ecological status in catchment (Sorraia, PT)
- EQR fishes (Odense, DK)

- Invertebrate richness (Welsh catchments, UK)

...O... EQR invertebrates (EPT) (Pinios, GR)

- - EQR macrophytes (Odense, DK)

Relative change in Ecological Quality Ratios

for the future scenarios across six case-studies

Project - outputs V:

Multiple stressors acting at European rivers

Multiple stressors

(modelled in MARS and SOLUTIONS)

Nutrients

Hydrological alteration

Riparian land use

Toxics

MODELLING

Ecological status (2nd RBMP)

Project - outputs V: Boosted regression tree analysis

PRELIMINARY ANALYSIS

Lowland streams and rivers N = 7,33 I Variance explained: 64 %

Variable	Group	Relative influence (%)
Dissolved inorganic nitrogen	Nutrients	19.2
msPAF	Toxics	16.9
Total phosphorus	Nutrients	14.5
Mean annual flow	Hydrology	13.0
%Agriculture	Riparian land use	11.6
%Urban	Riparian land use	10.5
High pulse duration	Hydrology	7.4
Low pulse duration	Hydrology	6.9

Project - outputs VI: Diagnostic Tool

0

• • • https://simplyshiny.shinyapps. ×				
← → C	os.io/catch_2_spider_plot/##	☆ 👰		
Apps 🗋 127.0.0.1:3386				
Catchment-scale Diagnosis Catchr	nent-scale Prognosis			
Please indicate the appropriate status of the following biological metrics/inidces:	Diagnostic plot Causal hierarchy Read mor	9		
What is the proportion of EPT specimens in the community (%) ?	Benthic	You are in the diagnostic analysis		
Low (<30) 🔻	mid-sized sand-	Potential causes of deterioration		
What is the proportion of grazers (%) ?	rivers of Central Europe			
Low (<5) 🗸	By choosing the appropriate metric	Arable land use		
What is the saprobic status ?	states of your water body, you can diagnose potential causes of deterioration. Chose "Unknown", if			
Medium (2.0–2.5) -	available. Based on your selection.	Riparian degradation Urban land use		
What is the Average Score per Taxon ?	the radar plot to the right displays the probabilities of the six candidate causes, of being causal for your matric states. Klick on			
Low (<5)	each cause to get more details of			
What is the proportion of shredders (%) ?	the probability distribution.To increase visibility, you can change the plot's scaling by sliding the scale bar to the right or left. The			
High (>40)	index card "Causal hierarchy"	Straightening Fine sediment pollution		
Low (<20) Medium (20–40)	provides you with a tabular output of the causes, in decreasing order of their probability. Select the index			
High (>40)	card "Read more" for more			
Unknown	information and useful links.	Flow reduction/impounding		
1 5 9 13 17 21 25 29 33 37 40		. en redelen inpedieng		

Project - outputs (general)

RDI gaps for the future

- Capitalising on the data source on stressor-impact-relationships:
 Disentangling the causes of multiple-stressor effects
- Capitalising on the Europe-wide data source on various stressors and ecological status:
 - → Modelling the effects of multiple stressors on functions and services
 - \rightarrow Including additional stressors (e.g. invasive species)
- Capitalising on the tools produced by MARS:
 - → Generating diagnostic tools for additional water categories and types
 - \rightarrow Including measures into the diagnostic tools

Link to SRIA themes

Strongly addressed by MARS

Partly addressed by MARS

Not addressed by MARS

Needs identified by SRIA	MARS contributions
I.I.I. Developing approaches for assessing the ecological functioning of ecosystems	Particularly from experimental approaches
I.I.2. Developing and testing methodologies for the valuation of ecosystem services	Only indirectly
I.I.3. Establishing multiple pressure-impact- response relationships in aquatic, riparian and groundwater-dependent Ecosystems	Many
I.I.4. Integrating ecosystem services into management of water resources	Europe-wide and catchment modelling of several ecosystem services
I.I.5 Adapting and integrating our water / ecosystem management, planning and governance systems with better environmental data and information	Diagnostic tools

Link to SRIA themes

Strongly addressed by MARS

Partly addressed by MARS

Not addressed by MARS

Needs identified by SRIA	MARS contributions
I.2.I. Restoring morphology continuity and hydraulic connectivity	Case studies in catchments
I.2.2. Managing the risks caused by invasive species and options for remediation	Not directly addressed
I.2.3. Understanding and managing ecological flows	Hydrological models and predictions (catchments and Europe-wide)
I.2.4. Integrated eco-technological solutions for the remediation and mitigation of degraded water bodies and aquatic ecosystems	Diagnostic tools

Link to SRIA themes

Strongly addressed by MARS

Partly addressed by MARS

Not addressed by MARS

Needs identified by SRIA	MARS contributions
1.3.1. Understanding the causes of drought/scarcity; predicting drought events and water scarcity and developing adaptation measures	Europe-wide and catchment hydrological models
 I.3.2. Developing innovative (or improved) tools for adaptation to hydroclimatic extreme events, especially floods 	Not directly addressed
I.3.3. Improving water management to mitigate the harmful impacts of extreme events (extreme weather events, impaired water quality)	Not directly addressed

Project - contact details

- www.mars-project.eu
- www.freshwaterblog.net
- www.freshwaterplatform.eu