SOLUTIONS & JPI

As lutions focused perspective on arising challenges of contaminants of emerging concern

Annemarie van Wezel & many collegues

Watercycle Research Institute

Chemicals: useful contributors to economic development

We use chemicals for beneficial purposes

Global chemical production grows faster than population

So does water withdrawal by sectors using chemicals

 \rightarrow Increasing chemical stress on our water systems

Wilson & Schwarzman 2009, FAO Aquastat

Functions of water...

Water flows...

and integrates urban and rural water withdrawals and returns

Sectors demand for sufficient water quality fit for purpose

Contaminants of emerging concern

Not commonly monitored Indications of presence in environment Likely toxic and persistent Scarcity of information Potential to pose risks No regulatory criteria or norms

Sauve & Desoriers 2014

Pathways to the aqueous environment

Sectors & their chemical uses

Acute and chronic risk at 14 and 42 % of the sites

Malaj et al 2014

Saluti **S**aluti

- Conceptual framework for prioritisation, assessment and abatement of pollutants (eco and human health)
- Efficient tools for identification of substances and mixtures posing a risk (e.g. River Basin Specific Pollutants):
 - effect-based and analytical tools for early detection and identification
 - integrated models and databases for risk modelling ٠ exploiting data from chemical authorisation (e.g. **REACH**) and monitoring
- Demonstration in trans-European case studies (Danube, Rhine, Iberian Peninsula)

SOLUTIONS & JPI

39 partners

12 mio Euro

1/10/2013 - 1/10/2018

UFZ coordinates

All these chemicals... \rightarrow suspect screening and prioritization

Composition of suspect list.

Suspects

Authorized chemicals REACH Registration list >1000 tons REACH Registration list 100-1000 tons REACH SVHC CMR Pesticides/Biocides Human and veterinary pharmaceuticals Chemicals in EU water quality regulation Drinking water directive Priority substances directive Potentially relevant chemicals Drinking water relevant chemicals IAWR/RIWA Ecosystem relevant chemicals NORMAN

Watercycle Research Institute

Number of chemicals

2198
1922
68
181
364
211
15
37
81
623

Sjerps et al 2016

Fingerprinting water samples

Water type	Combined modes	
	Masses	Suspects
Effluent >1 µg/L	29	43
Surface water >0.1 µg/L	62	86
Ground water >0.01 µg/L	47	66
Drinking water >0.01 µg/L	28	50
All > threshold	113	174

One prioritized suspects regulated, 20% mentioned on lists of potentially relevant chemicals

 \rightarrow complementy to target-based methods

Groundwater	Drinking water
n=30	n=20
4-59	<u>u-20</u>
= =	=
	⊢
=	
=	
_	
	⊢
	·
-	
	F =
=	
—	
=	
	\vdash
	-
	- _ -
: =	
-	
-	
_	
	F
· -	
	.
<u> </u>	·
	- -
	-
- <u> </u>	L

increases

Stakeholder in the water sector more aware on their presence

 \rightarrow a strong drive for measures to reduce exposures and effects.

14

Solutions-focused risk assessment

- Insight in the effects of sets of abatement options throughout the chemical's life cycle, in various sectors and at various places in the water system
- Environmental improvement expressed as decreased concentrations, improved ecological quality or water system services.

Watercycle Research Institute

Declined chemical footprint Better use of water services €/time/scale Public support

Etc.

Improvement of water quality

- a) decreased concentrations
- b) diminished adverse effects on environmental and human health
- c) better possibilities to obtain water system services

Zijp et al 2014

Where to place interventions?

Dutch surface water bodies modelled for 345 STPs and 9 rivers

Two pharmaceuticals, two extreme climate conditions

Half of source water used for drinking water production influenced by STPs

\rightarrow Fraction of STPs causes majority of impact

Watercycle Research Institute

Sewage treatment plants' relative impact on surface water units

Coppens et al 2015

To be continued at larger scale

STREAM-EU; Spatially and Temporally Resolved Exposure Assessment Model

for European basins

SOLUTIONS & JPI

Efficient abatement combines options in various stages of life cycle, using both preventive and curative options

- Early in the life cycle, non-٠ technological options relevant on large scales
- **Technological options** ٠ differentiated to specific uses later in the life cycle, relevant at regional scale
- Sectors involved could benefit by ulletcross-sectoral learning
- \rightarrow Intervention database

Watercycle Research Institute

Industry

Education

Highcharts com

Database with removal efficiencies

Including 91 emerging substances, mainly drinking water treatment techniques Activated carbon, oxidation, membranes, conventional WWTP; Ranges of efficiency of techniques used full scale, related to substance characteristics, water matrix or process conditions

Sorption	GAC	10 to >95%	High removal for
			hydrophobic
			chemicals
Biodegradation	Sand filtration	<20 to >90%	Higher removal for
			biodegradable
			chemicals, e.g.
			negatively charged
			and hydrophobic
Oxidation	UV (+H2O2),	5 to >99%	Higher removal for
	ozone		reactive chemicals
Size exclusion	NF, RO	generally >85%	Lower removal for
	membrane		small hydrophilic
			compounds, or fouled
			membranes.

Fisher et al in prep

RBF sites (so far) considered

- Worst-case simplified analytical approach gives first indication for which substances and where attenuation capacity during RBF may be insufficient
- Biggest challenge remains uncertainty regarding field scale degradation rate constants, which often show strong deviations between experiments/sites
- Hardly any well data at this stage available to verify ٠ outcome
- To be continued for more sites...

Watercycle Research Institute

Site information used: Concentrations in river **RBF** share Subsurface residence times Hydochemical conditions

IDPS - Integrated Data Portal for SOLUTIONS

by CAS	Q
by name	Q
by INChIKey	Q

Select for module

Links

RiBaTox

IPCheM

Watercycle Research Institute

Information on the link

Project info **>** IDPS info IDPS contacts Participant databases 🕨

IDPS – Emission and Abatement

Search for: Diclofenac

Go to the results

Select databases

page

Ð

 $\mathbf{\mathbf{\Theta}}$

 $\overline{}$

KWR

Visualise the metadata

Freeze the selected area (click and color change) to recall the same selection in the other modules or in a new chemical search

S_lutins-focused perspective

- Research on chemical water quality is focused mainly on problem and risk analysis.
- Prioritization of mitigation options, throughout the chemical's life cycle, in various sectors and at various places in the water system, might trigger effective and innovative approaches.
- Solution-focused assessments connect the perspectives of the water cycle and the chemical life cycle, and can be supported by a mitigation database.
- Studies on mitigation allow a common perspective, coherent implementation of cost-• effective mitigation options, and stimulate cross-sectoral learning.

