

# ECOSAFEFARMING



Huseyin Selcuk Mustafa Dogan Marion Martienssen Ibrahim Dincer Sixto Malato

Water JPI WaterWorks2015 Cofunded Call 6 April 2017, Stockholm



- Motivation
- Objectives
- Consortium Description
- Detailed Work Package Objectives
- Expected Impacts of the Project
- How will our project target to following aims of the call





Source: http://www.hydro-terra.com/sustainable-water-reuse-programs-can-boost-water-sustainability/

## MOTIVATION

- Severe water scarcity around the world
- Great potential of urban wastewater (UWW) utilization
- UWW in <u>agriculture and hydrogen production</u> support:
  - (i) better efficiency
  - (ii) better cost effectiveness
  - (iii) better resources use
  - (iv) better design and analysis
  - (v) better energy security
  - (vi) better environment



Source: http://www.asiaoutlookmag.com/news/singapore-takes-lead-in-asias-water-sustainability-development



## MOTIVATION

Advantages of our proposed system:

- reduced overall energy demand
- lower system cost and emissions
- significantly enhancement of overall efficiencies
- considerable increase in output generation rates



Source: http://statii.info/wpcontent/uploads/2014/05/chistav oda.jpg

• Aim: to bring a solution to water and energy issues and provide safe food and clean energy

 Novelty: implementation of photoactive membrane electrode systems for clean and nutritious irrigation water and hydrogen production from UWW



### OUR PROJECT

Solar Energy



Urban Wastewater Water (UWW) Our Proposed Novel Integrated Multigeneration System



# OBJECTIVES

- To enable reuse of UWW for agricultural irrigation
- To address issues related to safe food production
- To develop new photocatalytic reactors using local resources
- To design an integrated desalination process (PCED reactor)
- To produce clean water and hydrogen from wastewater
- To evaluate different configurations of reactors
- To scale up the most efficient PCED systems pilot applications
- To conduct quantitative health risk assessment



## **CONSORTIUM DESCRIPTION**

- <u>Istanbul University</u>: PCED for solar wastewater reuse and hydrogen production
- University of Ontario Institute of Technology (UOIT): home of the CERL and research on novel multigeneration systems in both small and large scales
- Centro de Investigaciones Energéticas, Medioambientales Tecnológicas – Solar Platform of Almería (CIEMAT-PSA): leadership in solar reactors and AOPs for wastewater treatment
- Brandenburg University of Technology (BUT): interdisciplinary research, innovative teaching, knowledge and technology transfer

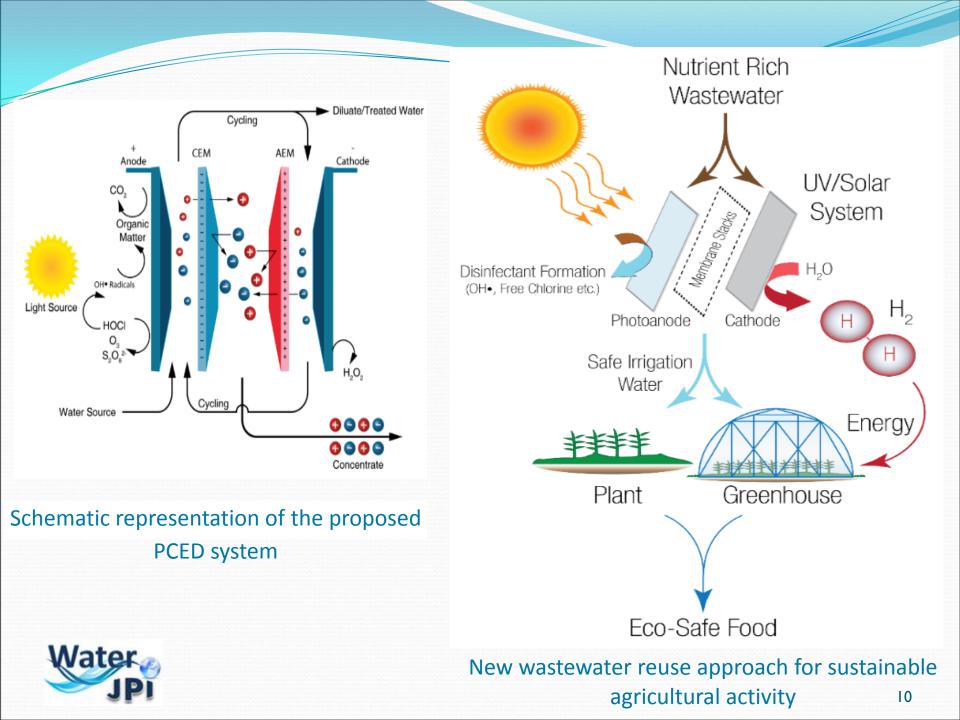


#### Project Management and Coordination

- To initiate the process and kick of the research activities
- To assign detailed roles and responsibilities to each party
- To develop a detailed plan to ensure close collaboration
  To prepare a detailed risk assessment and plan






# Lab-Scale Development, Optimization and Implementation of the Reactor

WP2

- To design the lab scale reactor
- To develop the optimized reactor
- To build the reactor
- To implement the reactor to the integrated system







#### Prototype Design and Production of Novel Reactor

WP3

- To design and build the lab-scale PCED configurations
- To investigate each reactor under different conditions
- To test different reactor configurations





#### **Case Studies for Agricultural Reuse**

NP4

- To scale up the reactors for agricultural applications
- To evaluate the performance of each system
- To evaluate the efficiency of the new solar prototypes
- To use treated UWW for irrigation pilot systems






### Monitoring and Evaluation of Wastewater Reuse, Impact on Plant and Soil

WP5

- To assess the process efficiencies
- To achieve the target pollutant value per unit volume





#### **Risk Assessments of Solar Reuse System**

MP6

- To evaluate the health risk and energy efficiency
- To conduct Quantitative Microbial Risk on the product
- To develop UWW reuse strategies for agriculture
- To perform techno-economic analysis on the system
- To determine the possible impacts for market applications





**Dissemination of Findings** 

WP7

- To bring all the results together
- To finalize all dissemination activities
- To conduct reporting, publishing, patenting etc.





### **Expected Impacts of the Project**

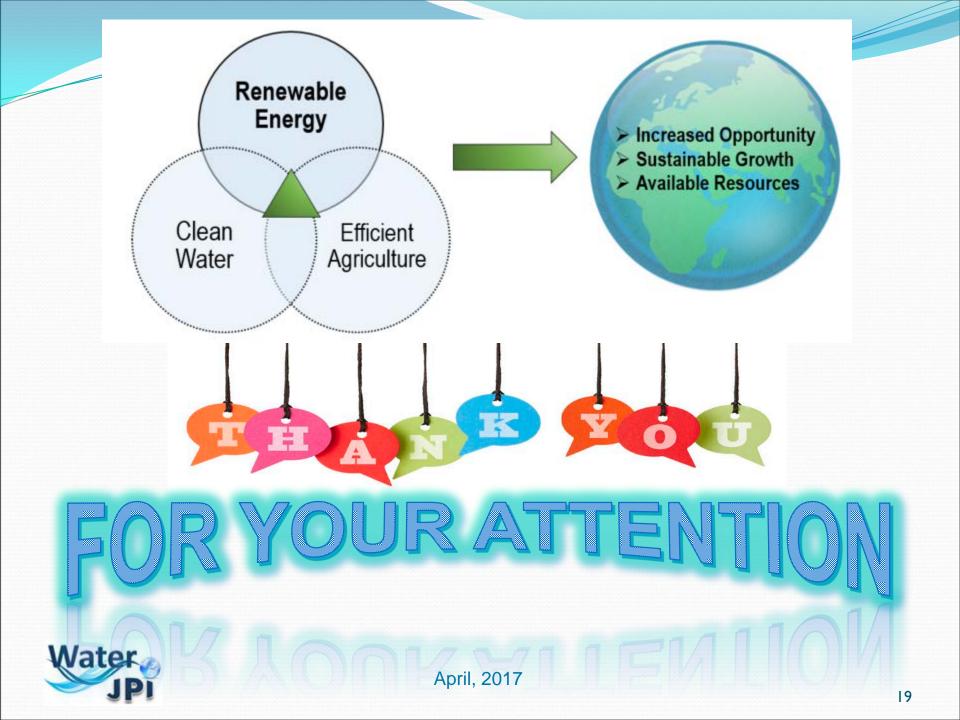
- Reduction or elimination of fertiliser applications
- Valuable tool for sustainable water supply in agriculture
- Social benefits:
  - (i) public health and better nutrition
  - (ii) food safety and security in local and global markets
  - (iii) sustainable agriculture
  - (iv) increased employment
- Environmental and technological benefits:
  - i) sustainable development for countries
  - ii) best environmental practices and technologies
  - iii) energy efficiency and applicability in food production

UWW treatment technologies with **renewable energy** 

# How will our project target to following aims of the call

- to promote multi-disciplinary work
  - Global collaboration of involved parties from diverse backgrounds

- to encourage proposals with fundamental and/or applied approaches
  - Development of novel membrane systems for water treatment and hydrogen production




# How will our project target to following aims of the call

- to stimulate mobility of researchers within the Consortium
  - Strong collaboration and close work among the researchers

- to enhance collaborative research and innovation during the project life and beyond
  - Strengthening the existing ties and continuation of collaboration



