

AQUAVAL Valorisation of water use in aquaculture using multi trophic systems

Paula ML Castro

Anuska Mosquera Corral Benedetto Sicuro Luz Arregui

Water JPI WaterWorks2015 Cofunded Call 6 April 2017, Stockholm

MOTIVATION

Aquaculture:

the fastest growing foodproducing sector

Environmental concerns

Need for optimization of water and wastewater management for economic viability

Driving interest for **novel technologies**:

- more compact;
- cost efficient for intensive aquaculture to counteract water resources depletion.

PROJECT STRUCTURE

Technological solutions more compact and efficient, optimizing water use in aquaculture systems, promoting recycling of water and valorising its use prior to discharge

Multi-trophic systems (bacteria, algae and bivalves) to develop Model-Trout-Farms (MTF)

OBJECTIVES

- Stable operation of aerobic granular biomass systems to remove micropollutants.
- Stable operation of the anammox process operated at extremely low nitrogen concentration and low temperature.
- Treatment system for the recovery of water suitable for reuse in the aquaculture.
- Optimal operational conditions to culture bivalves.
- System feasibility at pilot scale in an aquaculture plant.

CONSORTIUM DESCRIPTION

• UCP

Univ Católica Portuguesa

Expertise on granular sludge reactors and microalgae for wastewater treatment and reuse

• USC

Univ Santiago de Compostela

Expertise on the development of technologies based on anammox process

• DSV

University of Torino

Expertise in fish nutrition and freshwater rearing, with facilities for fish farming and bivalve rearing.

• GTM

Grupo Tres Mares

TRES MARES

Aquaculture facilities for the demonstrative pilot. On-site pathology, water and chemical analysis and hygiene assays.

• UGhent

Ghent University (Collaboration)

Experience on microbial biofloculation and microalgae

WPI - Project management

UCP, USC, DSV and GTM

- Manage the activities of the project
- Ensure achievement of outcomes and collaboration between teams
- Organize production of deliverables, meetings, workshops, short missions

WP 2 - AGS reactors operation with bacteria and microalgae UCP, USC, UGhent (cooperation)

• Evaluate the three alternatives to treat wastewater from freshwater aquaculture systems.

WP 3 - Bivalves filtration unit

DVS, GTM

- Evaluate bivalves for treatment of effluents from trout tanks
- Evaluate bivalves as trout feeding
- Investigate the application for rearing freshwater mussels

USC, GTM, UCP,

• Evaluate AGS reactors (bioaugmented with microalgae and anammox bacteria) in GTM facilities

WP 4 - Field Trials

WP 5 - Evaluation of the integrated system <u>GTM</u>, UCP, USC

- Validate the integrated system implemented in situ
- Analysis of epidemiological and health risks impact

WP 6 - Dissemination and exploitation UCP, GTM, USC, DVS

- Guarantee the correct dissemination of the results
- Exploitation of obtained results

Expected Impact of the Project

•Challenge-I) Increasing the efficiency and resilience of water uses

•Challenge-2) Monitoring and reducing soil and water pollution

AGS reactors reduce N and pollutants with no temperature increase thanks to anammox

-Use of bivalves as depuration units using wastewater as resource

- 30% of trout production
increase by recovery of 8090% of the used water

- Granular sludge and anammox based processes as more energy efficient Technology aiming at reducing nutrient loads in the effluents

- Use of bivalves rearing units for depuration, indirectly increasing biodiversity

- Decrease the risk of therapeutics diffusion from aquaculture facilities

- Bivalves can drastically reduce bacteria carrying antibiotic resistance

Stakeholders:

- Industries: Findfresh (PT), FCC Aqualia (SP),
- <u>Sectorial associations</u>: Portuguese, Spanish and Italian Associations for Aquaculture producers

Promotion of a multi-disciplinary work

- Multidisciplinary teams allowing a multi-skilled environment
- Combination of **university and industrial partners** from different countries with complementary expertise
- Connections among the partners in terms of materials and knowledge

University partners	USC and UCP Development of technolog for water treatment		
	DVS	Bivalves culture	
Industrial partner	GTM, a trout aquaculture farm	Final user of the development	

Encouraging proposals with fundamental and/or applied approaches

- The integrated approach proposed will significantly decrease the impact of fish farm and will fit the commitment of European innovation programs (H2020, EIP Water, Water JPI)
- Feasibility to grow bivalves with potential economic outcomes
- The application of the developed system in situ will facilitate its diffusion to other companies

Mobility within the Consortium

To From	UCP	GTM	USC	DSV
UCP		Validation studies of the integrated system (WP4→5) (intersectorial	Activity tests for granules enriched with microalgae (In VVP2)	
GTM				Quality of fish fed with bivalve based feeds (WP5→4)(intersectorial)
USC	Bioaumentation of AGS (In WP2)			Microbiological characterization of effluents (WP2→3)
DSV	Growth of bivalves on AGS+microalgae effluents (WP3→2)	Test the bivalve meal on rainbow trout (WP5→4) (intersectorial)		

Acknowledgements

The authors would like to thank the EU, Fundação para a Ciência e a Tecnologia (FCT), Italian Ministry of Education, University and Research (MIUR) and Spanish Government: Ministerio de Economía y Competitividad (MINECO) for funding, in the frame of the collaborative international consortium AQUAVAL financed under the ERA-NET Cofund WaterWorks2015 Call.

